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1 Introduction

Waves and particles are the main constituents of the world but waves are our main method

of communication and detection, whether biological or technological. Historically, the study

of waves has been separated into the stationary (standing wave) and nonstationary (pulse)

case. Pulses are of fundamental consideration in radar, sonar, acoustics, fiber optics, among

many other areas. A pulse has been called by many terms: transient, wave group, progressive

wave, wave packet, nonrecurrent wave, traveling wave, non-periodic wave have all been used

to describe basically the same thing. Because one of the main properties of pulse propagation

is dispersion, that is, the fact that different frequencies propagate with different speeds,

time-frequency analysis offers an ideal approach toward their study [3, 4]. Over the past two

decades or so there has been substantial progress in the development of new methods for

analyzing a signal jointly in time and frequency and this has led to new results in the basic

nature of pulses.

In this report we deal with pulses and one of the main aims is to give a simple view

of pulse propagation, an approach that we call “a local view”which makes pulses easier

to understand and deal with intuitively. We have devised a new method to study pulse

propagation in dispersive media and using this approach we have derived exact expressions

for many physical quantities such as the spreading of a pulse, the conditions as to when

a pulse contracts, the contraction time, and other important physical quantities. We also

consider higher order dispersion, which is when there are terms on the dispersion relation

that are higher than quadratic, a concept that will be explained subsequently.

We list the main ideas, results, and methods presented in this report:

1. We describe a method to calculate exact moments of a propagating pulse without

having to calculate the pulse itself.

2. We discuss a local view of pulse propagation that explains in simple terms many of the

curious results of pulse propagation.

3. We have introduced the concept of covariance for pulses which gives a clear picture of

the physical situation and clarifies many of the mathematical results obtained.

4. We have studied higher order dispersion using the results of the method of point 1.

5. We show how instantaneous frequency changes from place to place for a propagating

pulse.
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6. We have explicitly given results for two standard situations, when a pulse is known for

all space at a given time and when a pulse is generated at a particular place for all

time. Both situations can be understood using the local view model.

7. We give many exactly solvable examples.

8. We show that the Wigner distribution approach to pulse propagation is very fruitful

both from a physical and numerical point of view.

Organization of this report: We have attempted to make this report basic in regards to

the issues presented and hence we discuss some of the fundamental facts regarding pulse

propagation, wave equations, and dispersion. In this manner the report may be read by

someone who is not particularly familiar with pulse propagation and dispersion.

2 Wave Equations and Dispersion

The concept of dispersion comes about in the following way[12, 17]. Take the standard free

space wave equation,
1

c2
∂2u

∂t2
− ∂2u

∂x2
= 0 (1)

and examine how the simplest wave propagates

uS(x, t) = eikx−iωt (2)

If one takes an instant snapshot of Eq. (2), that is if one looks at it for a fixed time, then

what one has is a spatial wave and its spatial frequency is given by k. On the other hand if

we stay at one position then what we have is a wave in time and ω is the frequency. Therefore

both k and ω are frequencies, one a spatial frequency and the other a time frequency. In Eq.

(2) one can chose k and ω independently. However, what the wave equation does is force a

relation between the two and that is called the dispersion relation. It is also important to

emphasize that by putting Eq. (2) into a wave equation we are not trying to find a solution

but just seeing if such a solution is possible at all. Also, we point out that the importance

of considering Eq. (2) is not only that it is physically simple, but because any pulse can be

decomposed in terms of it, where k and ω range over all space. Hence knowing what it does

for k and ω allows one to find the general solution. This was one of the great achievements

in pulse propagation and is discussed in subsequent sections.

We also should point out that getting the wave equations, Eq. (1), was one of the major

problems of the 18th century. It was obtained by D’Alembert and Euler and each had a
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different view point as to what is an acceptable solution. It started a major debate that

lasted 50 years and led to many new ideas including Fourier analysis.

If one substitutes Eq. (2) into Eq. (1) one gets that it can only be a solution if there is

a relation between k and ω. In particular

ω2 = c2k2 (3)

or

ω = ±ck (4)

Now we see that one cannot chose k and ω at will, we must have that relation satisfied. Let

us momentarily choose ω = k and therefore

uS(x, t) = eik(x−ct) (5)

and we see that for this case the wave propagates to the right. Moreover one can now show

that if we have any pulse at t = 0 given by u(x, 0), then

u(x, t) = u(x− ct, 0) (6)

That is, it propagates without distortion. That Eq. (6) follows is because an arbitrary wave

can be decomposed into simple waves and each travels at the same speed.

We also point out that one can have a different perspective and write

uS(x, t) = eiω(x/c−t) (7)

and we will discuss this later.

Now consider the beam equation

1

α2

∂2u

∂t2
+
∂4u

∂x4
= 0 (8)

Again putting in the simple solution one obtains that

ω2 = α2k4 (9)

and again let use choose ω = αk2. Now

uS(x, t) = eik−iαk
2t (10)

= eik(x−αkt) (11)

One still has the possibility of a simple wave but now the velocity is αk, that is the velocity

depends on k and therefore if we had the sum of two waves they would not move in unison.
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Hence if we have a pulse that is the sum of simple pulses there is no one velocity associated

with the whole pulse and moreover it is not the case that one can find a velocity so that

Eq. (6) is true. There are other velocities that can be associated with the pulse and that is

something we will discuss in detail later.

Generally speaking suppose we have an arbitrary wave equation, put the simple solution

in and obtain a relation

ω = W (k) (12)

then

uS(x, t) = eik(x−
W (k)

k
t) (13)

and we see that a simple wave with wave number k propagates with a velocity

vp =
W (k)

k
(14)

and this is called the phase velocity. If we only consider simple waves this would be it.

However if we consider combination of pure waves, that is a pulse, these considerations are

not sufficient. In pulse propagation there is an equal and perhaps more important velocity,

the group velocity, as we will explain shortly.

2.1 General Solution

Linear partial differential equations whose solutions give wave like behavior come in many

varieties, the above two being prime examples. Fortunately, the solution to all of them can

be written in a simple form. All linear wave equations with constant coefficients may be

written in this form
N∑

n=0

an
∂nu

∂tn
=

M∑

n=0

bn
∂nu

∂xn
(15)

One attempts to solve it by substituting eikx−iωt into Eq. (15) to give

N∑

n=0

an(−iω)n =

M∑

n=0

bn(ik)
n (16)

or
N∑

n=0

an(−iω)n −
M∑

n=0

bn(ik)
n = 0 (17)

One can solve for ω in terms of k

ω = W (k) (18)

or solve for k in terms of ω

k = K(ω) (19)
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Which one to choose depends on the formulation of the problem and specifically on the

initial conditions. The two basic initial physical situations, that we call case A and case B

are

Initially Given : u(x, 0) (Case A) (20)

: u(0, t) (Case B) (21)

The first case is when we have the spatial wave at a given time, and the second when we

have the wave at a given position for all time. An example of the first is if we pluck a string

and let go at time zero. An example of the second is if we are at a fixed position and create

a pulse, for example, a radar, sonar, or fiber optic pulse.

We first discuss Case A. The general solution is [12, 17]

u(x, t) =
1√
2π

∫
S(k, 0) eikx−iW (k)t dk (22)

where S(k, 0) is the initial spatial spectrum and is calculated from the initial pulse

S(k, 0) =
1√
2π

∫
u(x, 0) e−ikx dx (23)

and W (k) is the dispersion relation as discussed above. The general solution given by Eq.

(22) can be found in textbooks [12, 17].

If one defines the time dependent spectrum by

S(k, t) = S(k, 0) e−iW (k)t (24)

then u(x, t) and S(k, t) form Fourier transform pairs between x and k

u(x, t) =
1√
2π

∫
S(k, t) eikx dk (25)

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx (26)

It is crucial to note that u(x, t) and S(k, t) form Fourier transform pairs between k and x

for all time. Case B will be developed in the chapter called Case B.

Important Concepts

There are a number of important concepts that arise and we discuss them here briefly.

Modes. As we have seen from the examples above there can be many solutions to the

dispersion relation and each solution is called a mode. For example for the beam equation

we have that

W (k) = αk2 W (k) = −αk2 (27)

5



and each solution is called a mode. The general solution is then the sum of the modes. In

this report we will be discussing one mode at a time.

Reality and attenuation. If for a particular mode W (k) is real, then there is no attenuation.

The reason for that is that suppose W (k) was complex

W (k) = WR(k) − iWI(k) (28)

then we would have

eikx−iW (k)t = eikx−i(WR(k)−iWI(k))t (29)

= e−WI(k)teikx−iWR(k)t (30)

and we see that because of the term e−WI(k)t the wave would dye out. Therefore, depending

on whether W (k) is complex or real we will have damping or not. In this report we consider

the case where we have no damping. However we emphasize that the damped case is very

important. See the “Future Work” section of this report.

Group velocity. A central idea in the study of pulse propagation is the group velocity, v(k),

which is defined by

v(k) = W ′(k) (31)

There are many plausible arguments that have been given in the literature for calling this

quantity the group velocity and most books give a plausible argument for defining the above

as a “velocity”. In a subsequent section we will give new relations for a propagating pulse

that we think gives a very clear picture as to the physical meaning of v(k) is and how it is

related to the propagation of the center of mass of the pulse. The word group is somewhat of

a misnomer but it comes about from the original derivation as historically given and indicates

how a narrowband set of waves (a group of waves) centered about the spatial frequency given

by k propagates.

Transit time. In the chapter Case B we will study the time properties of a pulse at a fixed

position. We will see that the natural quantity that appears there is

τ(ω) = K ′(ω) (32)

We will see that it is related to the amount of time it takes for a frequency to travel a unit

distance. We call it the frequency transit time.

Structural/geometrical and Media dispersion. As we have seen above for the free space

wave equation there is no dispersion. But that there is dispersion for the beam equation.

However, if one imposes boundary conditions on the free space wave equations, such as in

a waveguide, then dispersion will occur because the imposition of the boundary conditions
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generally forces a relationship between ω and k. This type of dispersion is called geometric

or structural dispersion in contrast to media dispersion which comes from the wave equation,

such as the beam equation. The reason one has dispersion in such a case is because there

is reinforcement, and cancellations of waves depend on the geometry and therefore certain

modes die out and others survive.

2.2 Asymptotic Solution

One of the fundamental tools for linear wave propagation has been the so called asymptotic

solution, first obtained by Kelvin using the method of stationary phase. We give it here

because most of our work will be to obtain exact equations, but it will be interesting to

contrast with the traditional asymptotic solution. We do not give the derivation here as it

can be found in most books. One takes the dispersion relation for each mode and sets

W ′(k) =
x

t
(33)

and solves it for k which we call ks

ks = ks(x/t) (34)

These are the so-called stationary points. The asymptotic solution is then [12, 17]

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnW ′′/4 (35)

ua(x, t) ∼
S(ks, 0)√
tW ′′(ks)

eiksx−iW (ks)t−iπsgnW ′′/4 (36)

= Aa(x, t)e
iϕa(x,t) (37)

For later convenience we define the amplitude and phase

Aa(x, t) =
S(ks, 0)√
tW ′′(ks)

(38)

ϕa(x, t) = ksx−W (ks)t− iπsgnW ′′/4 (39)

A simple derivation and application of this to filtered signals was given by Cohen [9].

2.3 Pulse Propagation As a Filtering Operation

The characteristic of pulse propagation is that the spatial spectrum has the form

S(k, t) = S(k, 0) e−iW (k)t (40)
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It is a product of the initial spatial spectrum multiplied by e−iW (k)t. But this is standard

filtering and of course in the time domain it is the convolution of the initial pulse with the

function that produces the spatial spectrum e−iW (k)t. If we define

w(x, t) =
1√
2π

∫
e−iW (k)t eikx dk (41)

then u(x, t) is the convolution of u(x, 0) with w(x, t). In particular,

u(x, t) =

∫
u(x− x′, 0)w(x′, t)dx′ (42)

=

∫
u(x′, 0)w(x− x′, t)dx′ (43)

and of course this is the classical expression of the Green’s function approach. The reason we

mention it here is that one can write a fast and simple program to calculate u(x, t) because

convolution can be done by the FFT algorithm. Dr. Patrick Loughlin [13] has written a

simple program using this ideas that we have found very useful to study the issues discussed

in the report.

3 Exact Moments of a Pulse

We define the moments of the pulse in the standard way

〈 xn 〉t =

∫
xn |u(x, t)|2 dx (44)

and our aim is to show that one can calculate the exact moments even though we do not

solve for u(x, t). There are three reasons for this:

• First, it is always the case that one can calculate these moments from the spectrum,

that is

〈 xn 〉t =

∫
xn |u(x, t)|2 dx (45)

=

∫
S∗(k, t)X n S(k, t) dk (46)

where X is the position operator in the k representation

X = i
∂

∂k
(47)

• Secondly, and what potentially offers a simple method of calculating moments, is the

fact that

S(k, t) = S(k, 0) e−iW (k)t (48)

and therefore the differentiation indicated by X n S(k, t) can actually be carried on.

8



• Third, once the differentiation is done, the resulting quantities are expressible in terms

of polynomials in time and S(k, 0) which in turn means we can express things in terms

of the initial quantities.

We now give the results for some important low order moments and discuss the physical

meaning. The derivations are given in the appendix.

3.1 The Mean

The first conditional moment is

〈 x 〉t =

∫
x |u(x, t)|2 dx (49)

=

∫
S∗(k, t)X S(k, t) dk (50)

and evaluates to

〈 x 〉t = 〈 x 〉0 + V t (51)

where

V =

∫
v(k) |S(k, 0)|2 dk (52)

v(k) =
dW (k)

dk
(53)

We now discuss the physical meaning of Eq. (51):

a) First, we point and emphasize that the usual definition of group velocity, Eq. (53),

appears in a natural way as can be seen from the derivation in the appendix. It does not

have to be imposed in any way.

b) The center of mass travels with a constant velocity, V , for all wave equations and all

situations, and all starting conditions.

c) The velocity, V , depends of course on the dispersion relation. However it also depends

on the initial spectrum. Therefore how one starts the pulse effects the propagation of the

center of mass!

d) Also, V depends only on the magnitude of the initial spectrum.

e) Note that V can be considered an average with the weighing function |S(k, 0)|2. It is

the average of the group velocity. Therefore v(k) can be thought of as the velocity for each

value of k and we will sometimes write

〈 v 〉 =

∫
v(k) |S(k, 0)|2 dk = V (54)

9



3.2 Second Moment

〈 x2 〉t =

∫
x 2|u(x, t)|2 dx (55)

=

∫
S∗(k, t)X 2 S(k, t) dk (56)

and evaluates to

〈 x2 〉t = 〈 x2 〉0 + t 〈 vX + X v 〉0 + t2 〈 v2 〉 (57)

Where

〈 vX + X v 〉t =

∫
S∗(k, t) [v(k)X + Xv(k)] S(k, t) dk (58)

=

∫
S∗(k, t)

[
v(k)i

∂

∂k
+i

∂

∂k
v(k)

]
S(k, t) dk (59)

= i

∫
S∗(k, t)

[
2v(k)

∂S(k, t)

∂k
+ v′(k)S(k, t)

]
dk (60)

A standard notation for such quantities is the anticommutator

[v, x]+ = v(k)X + X v(k) (61)

Also this quantity can be calculated from the pulse directly. If we take

K = −i ∂
∂x

(62)

then also

〈 vX + X v 〉t =

∫
u∗(x, t) [v(K)x + xv(K)] u(x, t) dx (63)

This quantity and its physical interpretation will be quite important and we emphasize that

it comes up naturally in the derivation. Alternative expressions will be given in the next

section, where we will also discuss its physical meaning. Also, in Eq. (57), 〈 v2 〉 is obtained

from

〈 v2 〉 =

∫
v2(k) |S(k, 0)|2 dk (64)

3.3 Spread

The spread at a particular time, defined in the usual way by

σ2
x|t = 〈 x2 〉t − 〈 x 〉2t (65)

=

∫
S∗(k, t) (X − 〈 x 〉t)2 S(k, t) dk (66)
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works out to be remarkably simple,

σ2
x|t = σ2

x|0 + 2 tCovxv|0 + t2σ2
v (67)

where

σ2
v = 〈 v2 〉 − 〈 v 〉2 (68)

=

∫
(v(k) − V )2 |S(k, 0)|2 dk (69)

Covxv|0 = 1
2
〈 vX + X v 〉0 − 〈 v 〉0〈 x 〉0 (70)

We now make some remarks regarding the above expression for the spread:

1. Notice that σ2
v is the standard deviation of the group velocity. Why should that come

in? Notice that it is calculated at the initial time.

2. As is the quantity 〈 vX +X v 〉0 basic to our considerations so is the quantity Covxv|0;

we call it the “covariance” between position and group velocity because it acts very much

like the standard covariance. It is also calculated at the initial time.

3.4 Covariance

The covariance plays a basic role in pulse propagation and we now discuss it in more detail.

In the above we defined it at time zero but now we define these quantities for an arbitrary

time. In particular we define

〈 xv 〉t = 1
2
〈 vX + X v 〉t (71)

= 1
2

∫
S∗(k, t) (vX + X v)S(k, t) dk (72)

If the spectrum is written in terms of amplitude and phase

S(k, t) = |S(k, t)| eiψ(k,t) (73)

then, substituting Eq.(73) into Eq. (71) one obtains that

〈 xv 〉t = −
∫
v(k)

∂ψ(k, t)

∂k
|S(k, t)|2 dk (74)

Consider how 〈 xv〉t changes in time for a pulse. The time dependent spatial spectrum is

given by

S(k, t) = |S(k, t)| eiψ(k,t) (75)

= S(k, 0) e−iW (k)t (76)

= |S(k, 0)| eiψ(k,0)e−iW (k)t (77)

= |S(k, 0)| eiψ(k,0)−iW (k)t (78)

11



and hence the phase evolves as

ψ(k, t) = ψ(k, 0) −W (k)t (79)

Differentiating,
∂ψ(k, t)

∂k
=

∂ψ(k, 0)

∂k
−W ′(k)t (80)

or
∂ψ(k, t)

∂k
=

∂ψ(k, 0)

∂k
− v(k)t (81)

Substituting this into Eq. (74) we have

〈 xv 〉t = −
∫
v(k)

∂ψ(k, t)

∂k
|S(k, t)|2 dk (82)

= −
∫
v(k)

[
∂ψ(k, 0)

∂k
− v(k)t

]
|S(k, t)|2 dk (83)

= −
∫
v(k)

∂ψ(k, 0)

∂k
|S(k, t)|2 dk +

∫
v(k)v(k)t |S(k, t)|2 dk (84)

and hence

〈x v 〉t = 〈x v 〉0 + 〈 v2 〉t (85)

Now consider the covariance

Covxv|t = 〈 xv〉t − 〈 x〉t〈 v〉t (86)

First note the following

〈 v〉t =

∫
v(k)|S(k, t)|2 dk (87)

=

∫
v(k)|S(k, 0)|2 dk (88)

= 〈 v〉0 (89)

Therefore, the average group velocity does not change and we have,

Covxv|t = 〈 xv〉t − 〈 x〉t〈 v〉t (90)

= 〈x v 〉0 + 〈 v2 〉t− (〈 x 〉0 + V t)〈 v〉0 (91)

= 〈x v 〉0 − 〈 x 〉0〈 v〉0 + t(〈 v2 〉 − V 〈 v〉0) (92)

= 〈x v 〉0 − 〈 x 〉0〈 v〉0 + t(〈 v2 〉 − 〈 v〉20) (93)

Hence

Covxv|t = Covxv|0 + σ2
vt (94)

12



Since the coefficient of t is manifestly positive we see that no matter how negative the initial

covariance is, the covariance must eventually turn positive. Why should that be so? What

are the implications of that? We will see that with the model we subsequently present these

questions will become easy to answer.

Now consider the correlation coefficient between x and v,

ρ
xv|t =

Covxv|t
σx|tσv|t

=
Covxv|0 + tσ2

v

σv
√
σ2
x|0 + 2 tCovxv|0 + t2σ2

v

(95)

We now examine how it behaves for large and small times. For large times we have

ρ
xv|t =

(Covxv|0 + tσ2
v)

tσ2
v

[
1 +

σ2
x|0 + 2 tCovxv|0

t2σ2
v

]−1/2

(96)

=

[
1 +

Covxv|0
tσ2
v

][
1 +

σ2
x|0 + 2 tCovxv|0

t2σ2
v

]−1/2

(97)

v
[
1 +

Covxv|0
tσ2
v

]
1 − 1

2

σ2
x|0 + 2 tCovxv|0

t2σ2
v

+
3

8

(
σ2
x|0 + 2 tCovxv|0

t2σ2
v

)2

· ··


 (98)

=

[
1 +

Covxv|0
tσ2
v

][
1 −

Covxv|0
tσ2
v

− 1

2

σ2
x|0

t2σ2
v

+
3

8

(
4 Cov2

xv|0

t2σ4
v

)
· ··
]

(99)

=

[
1 +

Covxv|0
tσ2
v

][
1 −

Covxv|0
tσ2
v

+
3 Cov2

xv|0 − σ2
x|0σ

2
v

2t2σ4
v

· ··
]

(100)

=

[
1 +

2 Cov2
xv|0 − σ2

x|0σ
2
v

2t2σ4
v

· ··
]

(101)

As time goes to infinity we have that

ρxv|t → 1 as t→ ∞ (102)

which shows that at infinity there is perfect correlation between group velocity and position!
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For small times

ρ
xv|t =

Covxv|0 + tσ2
v

σv
√
σ2
x|0 + 2 tCovxv|0 + t2σ2

v

(103)

=
Covxv|0 + tσ2

v

σvσx|0
√

1 + (2 tCovxv|0 + t2σ2
v)/σ

2
x|0

(104)

v
Covxv|0 + tσ2

v

σvσx|0

[
1 − 1

2
(2 tCovxv|0 + t2σ2

v)/σ
2
x|0 +

3

8
(2 tCovxv|0 + t2σ2

v)
2/σ4

x|0 · · ·
]

(105)

=
Covxv|0
σvσx|0

+ t
σ2
v − Cov2

xv|0

σvσx|0
· · · (106)

= ρ
xv|0 + t

σ2
v − Cov2

xv|0

σvσx|0σ
2
x|0

· · · (107)

= ρ
xv|0 + t

(
1 − ρ2

xv|0

) σv
σx|0

· · · (108)

3.5 Expansion and Contraction Time

We repeat here the equation for spread

σ2
x|t = σ2

x|0 + 2 tCovxv|0 + t2σ2
v (109)

and emphasize that

• The spread has only a linear and quadratic term in time.

• The coefficient of the quadratic term is manifestly positive.

• This is not an approximation but is exact.

The quadratic term will eventually dominate since its coefficient is manifestly positive

and hence the spread will always become infinite at infinite time. But the coefficient of

the linear term may be negative and therefore the pulse may contract if the linear term

dominates the quadratic term for a period of time. We now obtain that period of time. If

we want smaller width than the original width, that is

σ2
x|t < σ2

x|0 (110)

then from Eq. (109) we have

σ2
x|0 + 2 tCovxv|0 + t2σ2

v < σ2
x|0 (111)
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or

2 tCovxv|0 + t2σ2
v < 0 (112)

giving that it will happen for contraction times, tC , given by

0 ≤ tC ≤ −2
Covxv|0
σ2
v

(113)

Therefore for there to be contraction we must have

Covxv|0 < 0 (114)

and why that should be the case will be seen simply when we explain our model. To obtain

the time when the pulse achieves a minimum width, differentiate σ2
x|t with respect to time

and set equal to zero,

∂σ2
x|t

∂t
= 2 Covxv|0 + 2tσ2

v = 0 (115)

yielding

tM = −
Covxv|0
σ2
v

=
1

2
tC (116)

therefore the time to achieve the minimum contraction is equal to the time to go from the

minimum contraction back to the original width. To determine how thin a pulse can get we

substitute t = tM in Eq. (109) to obtain

σ2
x|tM = σ2

x|0
(
1 − ρ2

xv|0
)

(117)

where ρxv|0 is the correlation coefficient,

ρ2
xv|0 =

Cov2
xv|0

σ2
vσ

2
x|0

(118)

We now give a physical picture explaining the above results. Consider the initial pulse

to be a swarm of particles where each particle has a constant velocity and where the swarm

has an average velocity V. We take V to be positive, that is the center of mass is moving to

the right. Now suppose that initially the particles on the right have high velocity and the

particles on the left have relatively slower velocity. Since everybody travels with a constant

velocity the spread will be higher once the particles start to move. On the other hand

suppose that fast particles are to the left and slow particles are to the right. Once the swarm

starts to move the fast particles are catching up and the distance between the slow and fast

particles is decreasing. That is the swarm contracts. Eventually the fast particles catch

up and that is the time when the pulse width is minimum. Once they catch up, they pass
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them and the distance then continues to increase. The reason the covariance comes in such

a fundamental way is that it tells us whether the fast particles are to the right or left of the

pulse. If the covariance is positive the fast particles are to the right of the slow particles and

if it is negative it means they are arranged the opposite way.

We now explain why the contraction time also depends on the spread of initial velocities.

If the spread is very large then that means there is a big difference between the fast and

slow particles and hence the spread in position will decrease faster since the fast particles

can catch up quickly to the slow particles. Conversely if the velocity spread is small then it

will take much longer for the fast particles to catch up to the slow particles.

Spread of Uncertainty Product. Using the fact that for pulse propagation

σ2
k|t = σ2

k|0 (119)

the uncertainty product evolves as

σ2
x|tσ

2
k|t = [σ2

x|t + 2tCovxv + t2σ2
v ]σ

2
k|0 (120)

= σ2
x|0σ

2
k|0 + [2tCovxv + t2σ2

v ]σ
2
k|0 (121)

The uncertainty product eventually goes to infinity but can also momentarily decrease.

When the uncertainty product is large the signal is said to be asymptotic. Thus in pulse

propagation all signals become asymptotic.

4 Local Model of Pulse Propagation

We now give the details of a simple physical model that gives the identical equations as pulse

propagation and from which all the quantities can be understood simply. More importantly

we argue that the model can be used to visualize and understand pulse propagation in

general. Motion of objects is simpler to visualize and understand than waves and certainly

much of the vocabulary of waves is derived from the desire to make believe waves act like

particles. We present a simple model of particle motion that is very close to wave motion

and which hopefully will help to understand wave motion phenomena. The reason one may

want to develop a particle view of wave motion is manifold. First, it may give us a clear

and more intuitive picture of what is going on with wave phenomena. Second, it could

lead to practical numerical schemes because instead of solving the wave equation we can

evolve particles. Third, it may help to understand non linear waves which are particularly

difficult to visualize. In addition, as we will show, in trying to understand wave propagation

one comes across certain physical quantities that appear, mathematically, like “correlation”,
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although their mathematical properties do not fully match those of classical correlations. By

making a particle model we may be able to understand better correlations between quantities

as they appear in the study of wave propagation.

Consider the simplest motion of a particle, the motion with a constant velocity,

xt = x0 + v t (122)

where xt is the position at time t, and the constant velocity is V . Now suppose we have a

group of particles and the group is characterized by a density at the initial time. If all the

particles have the same velocity it is clear that the group will move but keep its shape. Now

suppose the velocity of each particle is not the same and suppose we pick the velocity of

each particle depending on the initial position, x0. Hence we write

v = v(x0) (123)

and now we have

x(t) = x0 + v(x0) t (124)

For the density of particles we will use ρ(x, t), that is

ρ(x, t) = the density of particles at time t (125)

Also for convenience we use the following notation for the density at time zero,

ρ(x0) = ρ(x, 0) (126)

It will be helpful to think of this common situation. Suppose we have a large number of

runners at the starting line of a marathon and let us assume they take up a city block.

We could place the runners in many different initial configurations. The most common

arrangement is where one places the fast runners at the starting line, but we could place

them at the end of the block, or in the middle, or any way we want. Each of these different

ways is characterized by the function v(x0). How will the group of runners behave once the

gun goes off? Clearly if the fast runners are at the starting line the swarm will immediately

spread. But if the fast runners are at the back at the start of the race, then the swarm will

first contract and then expand.

Now let us study how the group of runners behaves after the starting gun. As usual we

define moments as

〈 xn 〉t =

∫
xnρ(x, t)dx (127)

However we do not have to know ρ(x, t) explicitly because we can calculate everything from

the initial density

〈 xn 〉t =

∫
(x0 + v(x0) t)

nρ(x0)dx (128)
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First consider the center of mass. One takes expectation values of both sides of Eq. (124)

〈 xt 〉 = 〈 x0 〉 + 〈 v(x0) 〉 t (129)

or

〈 x 〉t = 〈 x 〉0 + V t (130)

where

V = 〈 v0 〉 =

∫
v(x0)ρ(x0)dx0 (131)

Eq. (131) shows that the center of mass moves with a constant velocity which is the average

velocity of the group at the initial time. Now consider the second moment. Square Eq. (124)

x2
t = (x0 + v0t)

2 = x2
0 + 2x0v0t + v2

0t
2 (132)

and take averages of both sides, giving

〈 x2 〉t = 〈 x2 〉0 + 2〈 xv 〉0t + 〈 v2 〉0t2 (133)

where

〈 x0v0 〉 =

∫
x0v(x0)P (x0, 0)dx0 (134)

The spread of the swarm is

σ2
x|t = 〈 x 〉2t − 〈 xt 〉2 (135)

= 〈x2〉0 + 2〈xv〉0 t+ 〈v2〉0 t2 − (〈x〉0 + 〈v〉0t)2 (136)

= 〈x2〉0 − 〈x〉20 + 2(〈xv〉0 − 〈x〉0〈v〉0)t + (〈v2〉0 − 〈v〉20)t2 (137)

or,

σ2
x|t = σ2

x|0 + 2 Covvx|0t+ σ2
v|0t

2 (138)

where σ2
v|0 is the standard deviation of the initial velocity

σ2
v|0 = 〈v2〉0 − 〈v〉20 (139)

and where the covariance is

Covvx|0 = 〈xv(x)〉0 − 〈v〉0〈x〉0 (140)

It is the covariance between the initial position and initial velocity. One can write the spread

in terms of the correlation coefficient,

σ2
x|t = σ2

x|0 + 2ρvx|0σx|0σv|0t + σ2
v|0t

2 (141)
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where the correlation coefficient is

ρvx|0 =
Covxv|0
σx|0 σv|0

(142)

With one exception, the coefficient of t2 in Eq. (141) can never be made zero and therefore

the swarm must spread to infinity. The coefficient of t2 can be made zero only if we take

v0 = c. For that case we have that Covxv|t and σ2
v|0 are both zero and hence σ2

x|t = σ2
x|0 and

the swarm will not spread. While it is certain that the swarm will spread eventually, the

swarm can contract for a certain time. For the pulse to contract we must have Covxv ≤ 0

which gives

0 ≤ t ≤ −2
Covxv|0
σ2
v|0

(143)

for the contraction time.

Let us also calculate the covariance as a function of time. First, we have that

x(t)v(t) = (x0 + v0t)v0 = x0v0 + v2
0 t (144)

Taking averages we obtain

〈xv〉t = 〈xv〉0 + 〈 v2
0 〉 t (145)

The covariance at time t is then

Covvx|t = 〈xv〉t − 〈x〉t〈v〉t (146)

which gives

Covxv|t = Covxv|0 + σ2
v|0 t (147)

We see that the covariance must increase. For the correlation coefficient we have

ρxv|t =
Covxv|t
σx|tσv|t

=
Covxv|0 + σ2

v|0t

σv|0
√
σ2
x|0 + 2 Covvx|0t + σ2

v|0t
2

(148)

The covariance and correlation coefficient increase because as the swarm spreads the fast

particles will be more and more up front of the swarm and will hence be highly correlated

with the relative position in the swarm. Indeed as time goes to infinity the correlation

coefficient goes to 1,

ρxv|t → 1 as t→ ∞ (149)

To understand these equations consider the case where the fast runners are lined up in

the front. The initial covariance is positive, which indicates that fact. At the start the fast

runners take off, the slow runners at the back do not keep up and the swarm immediately
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spreads. However, suppose that the fast runners are in the back: the covariance is then

negative which means that the slow runners are up front. Now, for a short time after time at

the start of the race the fast runners are catching up to the slow runners and therefore the

swarm contracts. Also, the bigger the initial difference between the fast and slow runners,

the longer will be the contraction time. In addition the bigger the difference in speed between

the fast and slow runners the smaller will be the contraction time, because the fast runners

will catch up more quickly. The same type of behavior is exhibited by pulse propagation in

dispersive media.

5 Instantaneous Frequency and Dispersion

“Instantaneous frequency” is one of the most fundamental quantities; it is frequency as

a function of time. While it is intuitively obvious that frequencies do change, its exact

mathematical expression is far from obvious. Generally speaking instantaneous frequency

is the derivative of the phase and the question has been how do we determine the phase.

This is an old and important problem and the general solution is usually the one given by

Gabor. Take the real signal and delete its negative frequencies and form a new signal just

from the positive ones. That results in a complex signal and the derivative of the phase is

then the instantaneous frequency. However this procedure has not been fully investigated

for a pulse and we do not do so here but just point this out. Here we use the solution to the

wave equation and express it in terms of amplitude and phase,

u(x, t) = A(x, t)eiϕ(x,t) (150)

to define instantaneous frequency as

ωi(x, t) = − ∂

∂t
ϕ(x, t) (151)

and spatial local frequency by

ki(x, t) =
∂

∂t
ϕ(x, t) (152)

The reason for the differences in sign is because of the basic definition, Eq. (2).

We now address the problem as to how does the instantaneous frequency vary from point

to point as a pulse propagates and how does dispersion effect that. For example suppose

a sound is made and there are two people each standing at 50 and 100 feet away. Will

they hear the same sound? The answer is yes because for frequencies that humans speak at

there is no dispersion in air. However suppose there is dispersion, how would the frequencies

change? That is how does the instantaneous frequency of a pulse depend from position to
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position? We have not been able to do this exactly but we have done it approximately using

the asymptotic solution. However, for many examples we have been able to do it exactly and

hence we can compare our approximate solution with these exact solutions. For convenience

we repeat here the asymptomatic solution

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnW ′′/4 (153)

and the amplitude and phase are

Aa(x, t) = |S(ks, 0)|

√
1

tW ′′(ks)
(154)

ϕa(x, t) = ψ(ks, 0) + ksx−W (ks)t− πsgnW ′′/4 (155)

where the value of ks is obtained from solving

W ′(ks) = x/t (156)

Differentiating the phase, ϕa(x, t), we have

ωi(x, t) = − ∂

∂t
ϕa(x, t) (157)

=
dψ

dks

∂ks
∂t

+ x
∂ks
∂t

− t
dW (ks)

dks

∂ks
∂t

+W (ks) (158)

= −
[
dψ

dks
+ x− t

dW (ks)

dks

]
∂ks
∂t

+W (ks) (159)

= −
[
dψ

dks
+ x− t

x

t

]
∂ks
∂t

+W (ks) (160)

and hence

ωi(x, t) = − dψ

dks

∂ks
∂t

+W (ks) (161)

From Eq. (156) we have

W ′′(ks)
∂ks
∂t

= −x/t2 (162)

giving

∂ks
∂t

= − x

t2W ′′(ks)
(163)

= − W ′(ks)

tW ′′(ks)
(164)

= − W 2(ks)

xW ′′(ks)
(165)
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and therefore we can express the instantaneous frequency in the asymptotic regime in a

variety of ways,

ωi(x, t) =
x

t2W ′′(ks)

dψ

dks
+W (ks) (166)

=
W ′(ks)

tW ′′(ks)

dψ

dks
+W (ks) (167)

=
W ′2(ks)

xW ′′(ks)

dψ

dks
+W (ks) (168)

It should not be concluded from these expressions that the instantaneous frequency varies

in any specific way. For example by looking at Eq. (166) one may think that is a linear

function of x. That would not be right because in all of the above examples ks is a function

of x and t. However one can get a sense of that if we expand the dispersion relation in a

power series.

Spatial Local Frequency. We now consider the issue of spatial instantaneous frequency.

We define it by

ki(x, t) =
∂

∂x
ϕ(x, t) (169)

Differentiating the phase, ϕa(x, t), we have

ki(x, t) =
∂

∂x
ϕa(x, t) (170)

=
dψ

dks

∂ks
∂x

+ x
∂ks
∂x

+ ks − t
dW (ks)

dks

∂ks
∂x

(171)

=

[
dψ

dks
+ x− t

dW (ks)

dks

]
∂ks
∂x

+ ks (172)

=

[
dψ

dks
+ x− t

x

t

]
∂ks
∂x

+ ks (173)

=
dψ

dks

∂ks
∂x

+ ks (174)

But from Eq. (156) we now have that

W ′′(ks)
∂ks
∂x

= 1/t (175)

giving

∂ks
∂x

=
1

tW ′′(ks)
(176)

=
W ′(ks)

xW ′′(ks)
(177)
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and hence

ki(x, t) =
1

tW ′′(ks)

dψ(k, 0)

dks
+ ks (178)

=
W ′(ks)

xW ′′(ks)

dψ(k, 0)

dks
+ ks (179)

This is the spatial instantaneous frequency.

Translation invariance. We point out that while the exact solution is translationly

invariant the asymptotic solution is not. In particular suppose we define

utr(x, 0) = u(x− x0, 0) (180)

then for the exact solution

utr(x, t) = u(x− x0, t) (181)

Therefore, if we work things out for u(x, t) it is easy to take all formulas and change them

for the case u(x − x0, t). One merely substitutes x − x0 for x. However for the asymptotic

solution that is not the case, but we can obtain a formula to handle the situation. In general

we have that

Str(k, t) = eikx0S(k, t) (182)

and therefore

ua,tr(x, t) = eiksx0ua(x, t) (183)

The phase hence changes according to

ϕa,tr(x, t) = ϕa(x, t) + ksx0 (184)

and the instantaneous frequency is therefore

ωi,tr(x, t) = ωi(x, t) −
∂ks
∂t

x0 (185)

= ωi(x, t) +
xx0

t2W ′′(ks)
(186)

similarly

ki,tr(x, t) = ki(x, t) −
∂ks
∂x

x0 (187)

= ki(x, t) −
x0

tW ′′(ks)
(188)
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6 Higher Order Dispersion

Historically for a variety of reasons dispersion relation which are at most quadratic have

been intensively studied. Perhaps the main reason is that for that case certain integrals can

be carried out. Higher order dispersion is when there are terms in the dispersion relation

that are higher than quadratic and it is important to understand their effect. Now in our

previous development we have shown how to obtain exact relations for any dispersion relation

and therefore we should be able to get exact results illustrating higher order dispersion. To

obtain a sense of higher order dispersion we first do a specific example and then see if with

the simple example there are qualitatively different results. If so then we will try to prove

these in general. The example we use is where we add a cubic term to the dispersion relation

[10]

W (k) = ck + γk2/2 + ηk3/3 (189)

and for the initial pulse we take

u(x, 0) = (α/π)1/4 e−αx
2/2+iβx2/2+ik0x (190)

For each physical quantity of interest we shall give the result and discuss the effects of the

cubic dispersion term.

Velocity of the center of mass. One obtains

V = c+ γk0 + η

[
k2

0 +
1

2α′

]
(191)

= c+ γk0 + η

[
k2

0 +
α2 + β2

2α

]
(192)

Without the cubic term, it is seen that what enters are c and k0, and that is reasonable

because k0 is just the average spatial frequency of the initial pulse. However, adding the

cubic term introduces fundamental new parameters, namely α and β, which were absent

before.

Spread of Group Velocity. The spread is

σ2
v =

γ2

2α′ +
γηk0

α′ +
η2

α′

[
2k2

0 +
1

2α′

]
(193)

=
1

α′

(
γ2

2
+ γηk0 + η2

[
2k2

0 +
1

2α′

])
(194)

=
α2 + β2

α

(
γ2

2
+ γηk0 + η2

[
2k2

0 +
1

2α′

])
(195)

Covariance. As we discussed the sign of the covariance is crucial in determining whether a

pulse will contract and for how long the contraction will go on, and therefore it is important
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to see how higher order dispersion effects that. The covariance is now given by

Covxv =
β

α

[γ
2

+ ηk0

]
(196)

The higher order results now depends on k0. If we only have the quadratic term then the

sign of the covariance is only determined by the sign of β, assuming that both α and γ are

positive. But now we have another possibility because the sign and magnitude of k0 is at

our disposal. In fact, we can make the covariance less than zero even if we take all other

parameters positive. This will be the case when

Covxv ≤ 0 for k0 ≤
1

η

[
α

β
− γ

2

]
(197)

Spread. Putting the above results into Eq. (67) we have that the spread is

σ2
x|t = σ2

x|0 + 2t

[
β

α

(γ
2

+ ηk0

)]
+ t2

[
γ2

2α′ +
γηk0

α′ +
η2

α′

(
2k2

0 +
1

2α′

)]
(198)

= σ2
x|0 + 2t

[
β

α

(γ
2

+ ηk0

)]
+
t2

α′

[
γ2

2
+ γηk0 + η2

(
2k2

0 +
1

2α′

)]
(199)

= σ2
x|0

[
1 + 2βt(γ + 2αηk0) + (α2 + β2)t2

{
γ2 + 2γηk02η

2

(
2k2

0 +
α2 + β2

2α

)}]
(200)

Contraction. Using Eq. (198) the pulse will contract for

0 ≤ t ≤ T (201)

where

T = −
βα′

α

(
γ
2

+ ηk0

)

γ2/2 + γηk0 + η2
(
2k2

0 + 1
2α′

) (202)

= − 2β

γ(α2 + β2)

[
1 +

η2
(
2k2

0 + 1
2α′

)

(1 + 2ηk0)

]−1

(203)

If one compares the cubic case with the quadratic case we see that an important new signal

parameter comes into play, namely k0. It is probably the case that this parameter would also

enter into the quadratic case if an initial pulse was taken so that it would not be symmetrical

about k0. Nonetheless what our example shows is that there is a wide variety of possibilities

to control the contraction and rate of expansion of a pulse. It is important to appreciate that

the contrasts may just be due to the fact that we have used a Gaussian example and that

perhaps for the quadratic term the peculiarities arise just because of that. That is, perhaps

the reason the cubic terms effects arise is artificial, and perhaps they really are there in

general but absent from this examples. Further studies are needed to understand this fully

but what the above shows is one can calculate appropriate quantities exactly for the sake of

comparison.
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7 Wigner Distribution Approach

We now discuss how the Wigner distribution [18, 3, 4] gives considerable insight and calcula-

tional advantage into pulse propagation. It is natural that it should be the case since the aim

of time-frequency analysis is to show how frequencies change in time. The spatial/spatial-

frequency Wigner distribution is [11, 15]

W (x, k, t) =
1

2π

∫
u∗(x− 1

2
τ, t) u(x+ 1

2
τ, t) e−iτk dτ (204)

and in terms of the spatial spectrum it is

W (x, k, t) =
1

2π

∫
S∗(k + 1

2
θ, t)S(k − 1

2
θ, t) e−iθx dθ (205)

We first give the important moments in a general way, that is without specifying that we

are dealing with pulse propagation. Before giving these moments we repeat here the basic

definition of phases and amplitudes for both the signal and spectrum

u(x, t) = A(x, t)eiϕ(x,t) (206)

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx (207)

= B(k, t)eiψ(k,t) (208)

The Wigner distribution satisfies the marginals,
∫
W (x, k, t)dk = | u(x, t)|2 (209)

∫
W (x, k, t)dx = |S(k, t) |2 (210)

For the sake of clarity in this section we will not normalize the moments with their respective

marginals.

A straightforward calculation yields

〈k〉x,t =

∫
kW (x, k, t)dk (211)

=
∂

∂x
ϕ(x, t) (212)

which is the instantaneous spatial frequency. Also,

〈x〉k,t = B(k, t)

∫
xW (x, k, t)dx (213)

= − ∂

∂k
ψ(k, t) (214)
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and the covariance is

〈kx〉t =

∫
xkW (x, k, t)dxdk (215)

=

∫
x
∂ϕ(x, t)

∂x
|u(x, t)|2dx (216)

= −
∫
k
∂ψ(k, t)

∂k
|S(k, t) |2 (217)

Now let us specialize to the case of pulse propagation. We repeat here for convenience

the basic relevant equations that characterize pulse propagation

S(k, t) = S(k, 0) e−iW (k)t (218)

= B(k, t)eiψ(k,t) (219)

= B(k, 0)eiψ(k,0)−iW (k)t (220)

and

B(k, t) = B(k, 0) (221)

ψ(k, t) = ψ(k, 0) −W (k)t (222)

Therefore using Eq. (222) we have

〈x〉k,t = − ∂

∂k
ψ(k, t) (223)

= − ∂

∂k
ψ(k, 0) +W ′(k)t (224)

= − ∂

∂k
ψ(k, 0) + v(k)t (225)

But at t = 0

〈x〉k,0 = − ∂

∂k
ψ(k, 0) (226)

and therefore

〈x〉k,t = 〈x〉k,0 + v(k)t (227)

This is an interesting result because it predicts exactly the picture we developed previously.

Now consider

〈kx〉t = −
∫
k
∂ψ(k, t)

∂k
|S(k, t) |2 (228)

= −
∫
k(

∂

∂k
ψ(k, 0) − v′(k)t)|S(k, 0) |2 (229)

= 〈kx〉0 + 〈kv(k)〉0t (230)
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which agrees with our previous results. The important point to observe here is that these

expressions and results came out naturally using the Wigner distribution.

Evolution of the Wigner distribution and an approximation. Our aim is to express the

Wigner distribution at time t in terms of the Wigner distribution at time t = 0. The

reason we consider this problem is because a considerable simplification occurs. For pulse

propagation we substitute Eq. (218) into Eq. (205)

W (x, k, t) =
1

2π

∫
S∗(k + 1

2
θ, 0)S(k − θ/2, 0) e−iθxei[ω(k+θ/2)−ω(k−θ/2)]t dθ (231)

Starting with

W (x, k, 0) =
1

2π

∫
S∗(k + 1

2
θ, 0)S(k − 1

2
θ, 0) e−iθx dθ (232)

we invert to obtain,

S∗(k + 1
2
θ, 0)S(k − 1

2
θ, 0) =

∫
W (x, k, 0) eiθx dx (233)

and inserting into Eq. (231) we have

W (x, k, t) =
1

2π

∫∫
W (x′, k, 0) e−iθ(x

′−x)ei[W (k+θ/2)−W (k−θ/2)]t dθ dx′ (234)

This is exact. It is convenient to write this in terms of a Green’s function for the Wigner

distribution,

W (x, k, t) =
1

2π

∫
W (x′, k, 0)L(x′ − x, t) dx′ (235)

where

L(x′ − x, k, t) =

∫
e−iθ(x

′−x)ei[W (k+θ/2)−W (k−θ/2)]t dθ (236)

It is very interesting to find an approximation to the Wigner distribution with the follow-

ing aim. The evolution may be simple because we are in phase space and it is generally the

case that evolution equations take on a particularly simple form in comparison to evolution

of the density itself. Expand [W (k + θ/2) −W (k − θ/2)] in θ

W (k + θ/2) −W (k − θ/2) =

∞∑

n=0

W (2n+1)(k)

(2n+ 1)!

θ2n+1

2n
∼ v(k)θ +

1

24
v(2)(k)θ3 · · · (237)

where v(2n+1)(k) is the 2n + 1 derivative with respect to k. Keeping only the first term

L(x′ − x, t) ∼
∫

e−iθ(x
′−x)eiv(k)tθ dθ = δ(x′ − x + v(k)t) (238)

and substituting into Eq. (119) we have
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W (x, k, t) ∼ W (x− v(k)t, k, 0) (239)

This is a remarkably simple result and gives a very simple way of propagating the Wigner

distribution for pulses. Note that no calculations are required, just a simple substitution.

That is, no equations have to be solved or integrated. This method may be a good practical

method for evolving pulses in time. We now address how the method can be improved.

What is needed is further approximation by keeping more and more successive terms in the

expansion given by Eq. (123). Going to the next term we have

L(x′ − x, t) ∼
∫

e−iθ(x
′−x)eiv(k)tθ+iv

′′(k)tθ3/24 dθ (240)

=

∫
e−iθ[(x

′−x−v(k)t]eiv
′′(k)tθ3/24 dθ (241)

This integral can be expressed in terms of Airy functions but we do not do so here. This

may offer a considerable better approximation than Eq. (239)

We point out that the recovery of the pulse from the Wigner distribution is an important

problem. The signal can be recovered from the Wigner distribution up to a constant phase

factor. However in this case the constant phase factor may be a function of time! This issue

has been considered by Leavens and Mayato.

Example. Consider the initial pulse given by

u(x, 0) = (α/π)1/4 e−αx
2/2+iβx2/2+ik0x (242)

The Wigner distribution is

W (x, k, 0) =
1

π
e−αx

2−(k−βx−k0)2/α (243)

Therefore we have

W (x, k, t) ∼ W (x− v(k)t, k, 0) (244)

=
1

π
e−α(x−v(k)t)2−(k−k0−β(x−v(k)t))2/α (245)

This is a general result for the initial pulse where the dispersion relation is arbitrary. If we

now chose

W (k) = ck + γk2/2 (246)

v(k) = c+ γk (247)
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we have

W (x, k, t) ∼ W (x− v(k)t, k, 0) (248)

= W (x− (c+ kγt), k, 0) (249)

=
1

π
exp

[
−α((x− c− kγt)2 − (k − β(x− c− kγt− k0)

2/α
]

(250)

Explicitly

Wa(x, k, t) ∼
1

π
exp

[
−α((x− c− kγt)2 − (k − β(x− c− kγt− k0)

2/α
]

(251)

It is remarkable that for this example the answer is exact!

A further example is

W (k) = ck + γk3/3 ; v(k) = c+ γk2 (252)

and hence

Wa(x, k, t) = W (x− v(k)t, k, 0) (253)

= W (x− ct− γk2t, k, 0) (254)

=
1

π
e−α((x−ct−γk2t)2−(k−k0−β(x−ct−γk2t)2/α (255)

8 Case B

We now address the case where we are at a fixed position and generate a pulse, which is the

situation appropriate in radar, sonar and fiber optics, etc. We generate u(0, t) where we have

taken x = 0 where the pulse is being generated. Many new concepts are now introduced for

this case. An important issue is whether we stick with the definitions of the relation of pulse

and spectrum as before or we change to make it easier and more conventional to standard

signal analysis. We have decided to take

e−ikx+iωt (256)

for the fundamental solution. Substituting into the wave equation

N∑

n=0

an
∂nu

∂tn
=

M∑

n=0

bn
∂nu

∂xn
(257)

one obtains
N∑

n=0

an(iω)n −
M∑

n=0

bn(−ik)n = 0 (258)
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Solve for k in terms of ω

k = K(ω) (259)

The general solution is then given by

u(x, t) =
1√
2π

∫
F (ω, x) eiωt dω (260)

with

F (ω, x) = F (ω, 0) e−iK(ω)x (261)

where F (ω, 0) is the spectrum evaluated at x = 0,

F (ω, 0) =
1√
2π

∫
u(0, t) e−iωt dt (262)

Also,

F (ω, x) =
1√
2π

∫
u(x, t) e−iωt dt (263)

That is u(x, t) and F (ω, x) form Fourier transform pairs for any x. In analogy with group

velocity, K ′(ω), will be of importance . In particular we define the frequency transit τ(ω)

for a given frequency by

τ(ω) = K ′(ω) (264)

We call it the frequency transit time because as we will see it will turn out to be the time taken

for a given frequency to travel a unit distance. We now discuss some important concepts for

this case and ones thinking must change from the previous case. One must visualize that

one is staying put at a particular place and is measuring a number of important quantities.

Suppose we have a signal given by f(t), the mean time is traditionally defined by

〈 t 〉 =

∫
t |f(t)|2 dt (265)

The only difference between this and the usual definition is that now will be a function of

position. Similarly the duration of the signal is given by

σ2 =

∫
(t − 〈 t 〉)2|f(t)|2 dt (266)

In the case of pulse propagation we use the same definitions but this signal will be u(x, t)

and hence is a function of position. We now develop the analogous ideas and formulas for

this case as we did before and will introduce a number of new and interesting viewpoints.
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We first developed the general approach in terms of calculating moments, that is moments

at a particular point in space,

〈 tn 〉x =

∫
tn |u(x, t)|2 dt (267)

=

∫
F ∗(ω, x)T nF (ω, x) dω (268)

where T is the time operator in the frequency domain

T = i
∂

∂ω
(269)

We now discuss each moment and its physical interpretation. Consider the first moment. It

is given by

〈 t 〉x =

∫
t |u(x, t)|2 dt (270)

=

∫
F ∗(ω, x)T F (ω, x) dω (271)

and this evaluates to

〈 t 〉x = 〈 t 〉0 + Tx (272)

where

T =

∫
τ(ω) |F (ω, 0)|2 dω (273)

These equations lead to the following interpretation. τ(ω) is the time that it takes a sine

wave generated with frequency ω to travel a unit distance and T is the average time for all

frequencies where the spectrum is used as the weighting function. Therefore the mean time

at position x, 〈 t 〉x, is the mean time at position 〈 t 〉0 plus the time it took to travel from

the initial position to x. Now that quantity is Tx because as just discussed T is the time

per unit distance and x is the distance traveled since the particle started at x = 0 initially.

For the second moment

〈 t2 〉x = 〈t2〉0 + x〈τT + T τ)〉0 + x2〈τ 2〉0 (274)

where

〈τT + T τ)〉0 (275)

Where

〈τT + T τ)〉x =

∫
F ∗(ω, x) [τ(ω)T + T τ(ω)] F (ω, x)dω (276)

=

∫
F ∗(ω, x)

[
τ(ω)v(k)i

∂

∂ω
+i

∂

∂ω
τ(ω)v(k)

]
F (ω, x)dω (277)

= i

∫
F ∗(ω, x)

[
2τ(ω)

∂F (k, t)

∂ω
+ τ ′(ω)F (k, t)

]
dω (278)
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A standard notation is

[τ(ω), t]+ = τ(ω)T + T τ(ω) (279)

Also if we define

W = −i ∂
∂t

(280)

then

〈τ(W)t+ tτ(W)〉x =

∫
u∗(x, t) [τ(W)t+ tτ(W)] u(x, t) dt (281)

The duration is

σ2
t|x = σ2

t|0 + 2 xCovtτ + x2σ2
τ (282)

where

σ2
τ =

∫
(τ(ω) − T )2 |F (ω, 0)|2 dω (283)

Covtτ = 〈 τt 〉x − 〈 τ 〉0〈 t 〉0 (284)

The mathematics is as before and if we write

F (ω, x) = |F (ω, x)|eiψ(ω,x) (285)

then in general

〈 τt 〉x = 1
2
〈 τT + T τ 〉x (286)

= −
∫
τ(ω)

∂ψ

∂ω
|F (ω, x)|2 dω (287)

Now let us consider how duration changes with position. As before we note the dominant

term is x2σ2
τ (for large x) and its coefficient is manifestly positive. Therefore for large

distances the duration must go to infinity no matter what the duration is at the point where

it is generated. That is at large distances, and in particular at infinity the duration is infinite.

We now calculate at what spatial points xC the duration is smaller than the duration at

the point of generation, x = 0. The duration will be shorter if σ2
t|x < σ2

t|0, which gives

0 ≤ xC ≤ −2
Cov2

tτ |0

σ2
τ

(288)

It will be a minimum at the following point

xM = −
Covtτ |0
σ2
τ

=
1

2
xC (289)

and the duration at xM is

σ2
t|xM

= σ2
t|0 −

Covtτ |x
σ2
τ

= σ2
t|0
(
1 − ρtτ |x

)
(290)
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where

ρ2
tτ |0 =

Cov2
tτ |0

σ2
t σ

2
τ |0

(291)

The Covariance Between Time and Transit Time. As before the covariance is the crucial

quantity, but now it is the covariance between time and frequency transit time

Covtτ |x = 〈 tτ 〉x − 〈 τ 〉x〈 t 〉x (292)

If we express the spectrum in terms of amplitude and phase then

F (ω, x) = |F (ω, x)| eiψ(ω,x) (293)

= F (ω, 0) e−iK(ω)x (294)

= |F (ω, 0)| eiψ(ω,0)e−iK(ω)x (295)

and therefore the phase as a function of position is

ψ(ω, x) = ψ(ω, 0) −K(ω)x (296)

and hence
∂ψ(ω, x)

∂ω
=

∂ψ(ω, 0)

∂ω
−K ′(ω)x (297)

or
∂ψ(ω, x)

∂ω
=

∂ψ(ω, 0)

∂ω
− τx (298)

Substituting this into Eq. (287) we have

〈t τ 〉x = 〈t τ 〉0 + 〈 τ 2 〉x (299)

Therefore

Covtτ |x = 〈tτ 〉x − 〈 τ 〉x〈 t 〉x = 〈t τ 〉0 + 〈 τ 2 〉x− 〈 τ 〉0(〈 t 〉0 + 〈 τ 〉0x) (300)

giving

Covtτ |x = Covtτ |0 + x σ2
τ (301)

The correlation coefficient is

ρtτ |x =
Covtτ |x
σt|xστ |x

=
Covtτ |0 + xσ2

τ

στ |0
√
σ2
t|0 + 2 xCovtτ |0 + x2σ2

τ

(302)

and we have that

ρtτ |x → 1 x→ ∞ (303)
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Covariance Between Time and Frequency. It is interesting to calculate the covariance be-

tween time and frequency at a given position,

Covtω|x = 〈t ω 〉x − 〈t 〉x〈ω 〉x (304)

Now

〈 tω 〉x = 1
2
〈ωT + T ω 〉x (305)

= −
∫
ω
∂ψ(ω, x)

∂ω
|F (ω, x)|2 dω (306)

= −
∫
ω [

∂ψ(ω, 0)

∂ω
− τx]|F (ω, x)|2 dω (307)

= −
∫
ω [

∂ψ(ω, 0)

∂ω
− τx]|F (ω, 0)|2 dω (308)

Hence

〈t ω 〉x = 〈t ω 〉0 + 〈ω τ 〉0x (309)

and therefore

Covtω|x = 〈ω t 〉x − 〈ω 〉x〈 t 〉x (310)

= 〈t ω 〉0 + 〈ω τ 〉0x− 〈ω 〉0(〈 t 〉0 + Tx) (311)

= Covtω|0 + xCovωτ |0 (312)

where as usual

Covωτ |0 = 〈ω τ 〉0 − 〈ω 〉0〈 τ 〉0 (313)

Relation between frequency transit time and group velocity. If one interprets the group ve-

locity as the velocity that a certain frequency has and if one interprets the frequency transit

time as the time it takes a frequency to travel a unit distance, then clearly there should be

a relation between the two. Let us think in terms of the analogy with runners. Suppose the

velocity of a runner is v and hence in a time T he travels

x = vT (314)

Now his frequency transit time τ is the time it takes to travel a unit distance, that is given

by

τ = T/x = 1/v (315)

and hence we expect the relation between frequency transit time and group velocity to be

τ(ω) = 1/v(K(ω)). (316)

That is indeed the case.
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8.1 Instantaneous Frequency and Local Spatial Frequency

As before we define amplitude and phase by,

u(x, t) = A(x, t)eiϕ(x,t) (317)

but because of the change in convention for this part we define instantaneous frequency as

ωi(x, t) =
∂

∂t
ϕ(x, t) (318)

and spatial local frequency by

ki(x, t) = − ∂

∂t
ϕ(x, t) (319)

Asymptotic solution. We now give the asymptotic solution for case B. One sets

K ′(ωs) = t/x (320)

and hence

ua(x, t) ∼ F (ω, 0)

√
1

xK ′′(ω)
eiωt−iK(ω)x−iπsgnK′′/4|ω=ωs (321)

and the amplitude and phase are given by

|ua(x, t)| = |F (ω, 0)|

√
1

xK ′′(ω)
(322)

ϕa(x, t) = ψ(ω, 0)−K(ω)x+ ωt− πsgnK ′′/4 (323)

Instantaneous Frequency. To obtain the instantaneous frequency we have

ωi(x, t) =
∂ϕa(x, t)

∂t
(324)

=
∂ω

∂t

[
∂ψ

∂ω
− x

dK(ω)

dω
+ t

]
+ ω (325)

which gives

ωi(x, t) =

[
∂ω

∂t

∂ψ

∂ω

]
+ ω (326)

and since

K ′′(ω)
∂ω

∂t
= 1/x (327)

giving
∂ω

∂t
=

1

xK ′′(ω)
=

K ′(k)

tK ′′(k)
(328)
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Hence,

ωi(x, t) =
1

xK ′′(ω)

∂ψ

∂ω
+ ω (329)

=
K ′(k)

tK ′′(k)

∂ψ

∂ω
+ ω (330)

Spatial local frequency. The spatial instantaneous frequency is

ki(x, t) = − ∂

∂x
ϕa(x, t) (331)

= −
[
dψ

dωs

∂ωs
∂x

+ t
∂ωs
∂x

−K(ωs) − x
dK(ωs)

dωs

∂ωs
∂x

]
(332)

= −
[
dψ

dωs
+ t− x

dK(ωs)

dωs

]
∂ωs
∂x

+K(ωs) (333)

= −
[
dψ

dωs
+ t− x

t

x

]
∂ωs
∂x

+K(ωs) (334)

or

ki(x, t) = − dψ

dωs

∂ωs
∂x

+K(ωs) (335)

But from Eq. (320) we now have that

K ′′(ωs)
∂ωs
∂x

= −t/x2 (336)

giving

∂ωs
∂x

= − t

x2K ′′(ωs)
(337)

(338)

and hence

ki(x, t) = − t

x2K ′′(ωs)

dψ

dωs
+K(ωs) (339)

8.2 Wigner Distribution (Time-Frequency)

The Wigner distribution now is the conventional time-frequency one. Again we will use the

standard notation for the signal but now for the spectrum we have

u(x, t) = A(x, t)eiϕ(x,t) (340)

F (ω, x) =
1√
2π

∫
u(x, t) e−iωt dt (341)

= B(ω, x)eiψ(ω,x) (342)
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The time-frequency Wigner distribution is then

W (t, ω, x) =
1

2π

∫
u∗(x, t− 1

2
τ) u(x, t+ 1

2
τ) e−iτω dτ (343)

=
1

2π

∫
F ∗(ω + 1

2
θ, x)F (ω − 1

2
θ, x) e−iθt dθ (344)

The instantaneous frequency is the first conditional moment and is given by

〈ω〉t,x =

∫
ωW (t, ω, x)dω (345)

=
∂

∂t
ϕ(t, x) (346)

and the group delay is

〈t〉ω,x = B(ω, x)

∫
tW (t, ω, x)dt (347)

= − ∂

∂ω
ψ(ω, x) (348)

Also the covariance between time and frequency is

〈ωt〉x =

∫
tωW (t, ω, x)dtdω (349)

=

∫
t
∂ϕ(t, x)

∂t
|u(t, x)|2dt (350)

= −
∫
ω
∂ψ(ω, x)

∂ω
|F (ω, x) |2 (351)

Now for pulse propagation we have

F (ω, x) = F (ω, 0) e−iK(ω)x (352)

= B(ω, 0)eiψ(ω,0)−iK(ω)x (353)

and

B(ω, x) = B(ω, 0) (354)

ψ(ω, x) = ψ(ω, 0) −K(ω)x (355)

which gives

〈t〉ω,x = − ∂

∂ω
ψ(ω, x) (356)

= − ∂

∂ω
ψ(ω, 0) +K ′(ω)x (357)

= − ∂

∂ω
ψ(ω, 0) + τ(ω)x (358)
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At x = 0

〈t〉ω,0 = − ∂

∂ω
ψ(ω, 0) (359)

and therefore

〈t〉ω,x = 〈t〉ω,0 + τ(ω)x (360)

and also

〈ωt〉x = −
∫
ω
∂ψ(ω, x)

∂ω
|F (ω, x) |2 (361)

= −
∫
ω(

∂

∂ω
ψ(ω, 0) − τ(ω)x)|F (ω, 0) |2 (362)

= 〈ωt〉0 + 〈ωτ(ω)〉0x (363)

which agree with the results of Part B.

Now consider the relation of the Wigner distribution at position x and how it is related

at position zero. We write

W (t, ω, x) =
1

2π

∫
F ∗(ω + 1

2
θ, 0)F (ω − θ/2, 0) e−iθtei[K(ω+θ/2)−K(ω−θ/2)]x dθ (364)

and also

W (t, ω, 0) =
1

2π

∫
F ∗(ω + 1

2
θ, 0)F (ω − 1

2
θ, 0) e−iθt dθ (365)

which gives,

F ∗(ω + 1
2
θ, 0)F (ω − 1

2
θ, 0) =

∫
W (t, ω, 0) eiθt dt (366)

Inserting this into Eq. (364) we obtain

W (t, ω, x) =
1

2π

∫∫
W (t′, ω, 0) e−iθ(t

′−t)ei[k(ω+θ/2)−k(ω−θ/2)]x dθ dt′ (367)

which as before we write as

W (t, ω, x) =
1

2π

∫
W (t′, ω, 0)L(t′ − t, x) dt′ (368)

with

L(t′ − t, ω, x) =

∫
e−iθ(t

′−t)ei[K(ω+θ/2)−K(ω−θ/2)]x dθ (369)

Now expand [k(ω + θ/2) − k(ω − θ/2)] in a power series in θ to obtain

K(ω + θ/2) −K(ω − θ/2) =

∞∑

n=0

K(2n+1)(ω)

(2n+ 1)!

θ2n+1

2n
∼ τ(ω)θ +

1

24
τ (2)(ω)θ3 · · · (370)

where K(2n+1)(ω) is the 2n+ 1 derivative with respect to ω. Keeping only the first term

L(t′ − t, x) ∼
∫

e−iθ(t
′−t)eiτ(ω)xθ dθ = δ(t′ − t + τ(ω)x) (371)
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Substituting this into Eq. (368) we have

W (t, ω, x) ∼ W (t− τ(ω)x, ω, 0) (372)

As an example consider

u(0, t) = (α/π)1/4 e−αt
2/2+iβt2/2+iω0t (373)

and the Wigner distribution is

W (t, ω, 0) =
1

π
e−αt

2−(ω−βt−ω0)2/α (374)

and therefore

W (t, ω, x) ∼ W (t− τ(ω)x, ω, 0) (375)

=
1

π
e−α(t−τ(ω)x)2−(ω−ω0−β(t−τ(ω)x))2/α (376)

If we further assume that

K(ω) = Dω + γω2/2 (377)

τ(ω) = D + γω (378)

We have

W (t, ω, x) ∼ W (t− τ(ω)x, ω, 0) (379)

= W (t− (D + ωγ)x), ω, 0) (380)

=
1

π
exp

[
−α(t− (D + ωγ)x)2 − (ω − β(t−D − ωγx− ω0)

2/α
]

(381)

9 Space-Time Signals and Distributions

9.1 Time-Frequency/Spatial-Spatial Frequency Representations

In the previous sections we considered a joint representation for time and frequency for a

given position. We also considered joint space and spatial frequency distribution for a given

time. However as of now there is no way to handle relations that involve any mixed variables,

for example position and frequency. In this section we show how one can define for pulse

propagation a four dimensional representation involving jointly the four quantities, time,

frequency, space, and spatial frequency and for which the previous ones are special cases.

We will develop the material in this section in the following way. First we will derive the

equations keeping everything general and then specialize to the pulse propagation case.
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9.2 General results

What we seek is [7]

W (x, k, t, ω) = Joint distribution of time, frequency, space and spatial-frequency (382)

We use the four dimensional Wigner distribution defined by

W (x, k, t, ω) =

(
1

2π

)2 ∫∫
u∗(x− 1

2
τx, t−

1

2
τ) u(x+

1

2
τx, t+

1

2
τ) e−iτxk−iτω dτ dτx (383)

Now, the four dimensional Wigner distribution may be written in a number of different

ways all of which are useful depending on the calculation being done. First, we define the

two dimensional spectrum of the signal, G(k, ω) , and also list our previous definitions

u(x, t) = A(x, t)eiϕ(x,t) (384)

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx = B(k, t)eiψ(k,t) (385)

F (ω, x) =
1√
2π

∫
u(x, t) e−jωt dt = B(ω, x)eiψ(ω,x) (386)

G(k, ω) =
1

2π

∫∫
u(x, t) e−jωt−jkx dt dx = L(k, ω) eiψ(k,ω) (387)

With these definitions we have

W (x, k, t, ω) =

(
1

2π

)2 ∫∫
G∗(k +

1

2
θx, ω +

1

2
θ)G(k − 1

2
θx, ω − 1

2
θ) e−jθxx−jθt dθ dθx (388)

and

W (x, k, t, ω) =

(
1

2π

)2 ∫∫
S∗(k +

1

2
θx, t−

1

2
τ)S(k − 1

2
θx, t−

1

2
τ) e−jθxx−jτω dθ dτ (389)

and also

W (x, k, t, ω) =

(
1

2π

)2 ∫∫
F ∗(ω +

1

2
θ, x− 1

2
τx)F (ω − 1

2
θ, x+

1

2
τx) e

−jtθ−jτxk dθ dτx (390)

The marginals of the distribution are derived and given in the Appendix.

Moments. There are of course numerous moments that can be developed however we will

give only relevant moments and give them in the order which gives the most insight into

pulse propagation. The calculations are given in the appendix. Consider first 〈ω 〉x,k,t, the

instantaneous frequency for a given spatial point and spatial frequency at a given time,

〈ω 〉x,k,t =

∫
ωW (x, k, t, ω) dω (391)
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=
1

2π

1

2i

∫ [
s∗(x− 1

2
τx, t)

∂s(x + 1
2
τx, t)

∂t
−
∂s∗(x− 1

2
τx, t)

∂t
s(x+

1

2
τx, t)

]
e−jτxk dτx

(392)

In the Appendix we give different expressions for this and other quantities. Now consider the

instantaneous frequency irrespective of spatial frequency. It is obtained by further integrating

Eq. (392) with respect to the spatial variable,

〈ω〉x,t =

∫
ωW (x, k, t, ω) dωdk (393)

=

∫
〈ω 〉x,k,tdk (394)

and this evaluates to

〈ω〉x,t = A2(x, t)
∂

∂t
φ(x, t) (395)

which is the standard result for instantaneous frequency. Now consider 〈k〉x,t,ω. Because of

the symmetry of our definitions one can readily write expressions for 〈 k 〉x,ω,t and 〈k〉x,t.
Position. The average position is similarly given by

〈 x 〉k,t,ω =

∫
xC(x, k, t, ω) dx (396)

=
1

2π

1

2i

∫ (
S∗(k, t− 1

2
τ)
∂S(k, t + 1

2
τ)

∂k
−
∂S∗(k, t− 1

2
τ)

∂k
S(k, t+

1

2
τ)

)
e−jτω dτ

(397)

We now average further to obtain the average position for given wave number,

〈 x 〉k,t =

∫
xC(x, k, t, ω) dx dω (398)

= B2(k, t)
∂

∂k
ψ(k, t) (399)

We now further average to obtain

〈 x 〉t =

∫
B2(k, t)

∂

∂k
ψ(k, t) dk (400)

Covariance. We now consider the covariance. In the appendix we show

〈kω〉x,t = A2(x, t)
∂φ(x, t)

∂t

∂φ(x, t)

∂x
(401)

Calculation tool and physical interpretation. One can think of ∂
∂t
ϕ(x, t) and ∂

∂x
ϕ(x, t) as the

frequency and spatial frequency in the x, t representation. That is we associate

ω → ∂

∂t
ϕ(x, t) (402)
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k → ∂

∂x
ϕ(x, t) (403)

Using this idea, answers can generally be written down immediately without recourse to

calculations. For example, suppose we want 〈k〉x,t , then we can immediately write

〈k〉x,t = A2(x, t)
∂

∂x
ϕ(x, t) (404)

The same viewpoint can be taken in the spectral domain. In the spectral domain

x→ − ∂

∂k
ψ(k, ω) (405)

t→ − ∂

∂ω
ψ(k, ω) (406)

Suppose, that we want to calculate 〈xt〉k,ω, we simply write

〈xt〉k,ω = B2(k, ω)
∂ψ(k, ω)

∂k

∂ψ(k, ω)

∂ω
(407)

Using this method we have the following results. They can be checked independently by

direct calculation. The local covariance of frequency and spatial frequency is

Covx,t(kω) = A2(x, t)

(
∂ϕ(x, t)

∂t

∂ϕ(x, t)

∂x
− ∂ϕ(x, t)

∂t
− ∂ϕ(x, t)

∂x

)
(408)

and

Cov(kω) =

∫∫
A2(x, t)

(
∂ϕ(x, t)

∂t

∂ϕ(x, t)

∂x
− ∂ϕ(x, t)

∂t
− ∂ϕ(x, t)

∂x

)
dx dt (409)

Also

〈xt〉k,ω = B2(k, ω)
∂ψ(k, ω)

∂ω

∂ψ(k, ω)

∂k
(410)

9.3 Application to Pulse Propagation

The above results are general. We now specialize to the pulse propagation case. Pulse

propagation is imposed when we take

S(k, t) = S(k, 0) e−iW (k)t (411)

= B(k, 0)eiψ(k,0)−iW (k)t (412)
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or

B(k, t) = B(k, 0) (413)

ψ(k, t) = ψ(k, 0) −W (k)t (414)

Consider

〈x〉k,t,ω = |B(k, 0)|2
[
− ∂

∂k
ψ(k, 0) +W ′(k)t

]
δ(ω −W (k)) (415)

= |B(k, 0)|2
[
〈x〉k,0 +W ′(k)t

]
δ(ω −W (k)) (416)

This is an interesting result and can be interpreted as follows. The average of the pulse

at a certain frequency, spatial frequency, and time, varies linearly with time and with a

velocity equal to v(k); but the only frequencies allowed are those given by ω−W (k), that is

those that satisfy the dispersion relation. Of course this is intuitively obvious but we have

developed the mathematics to describe the situation. If we average over all frequencies, then

〈x〉k,t =

∫
〈x〉k,t,ω dω = |B(k, 0)|2

[
〈x〉k,0 + v(k)t

]
(417)

This is exactly the result obtained in previously using the two dimensional Wigner distrib-

ution. Also, further integration over spatial frequency gives

〈x〉t =

∫
〈x〉k,t dω =

∫
|B(k, 0)|2

[
〈x〉k,0 + v(k)t

]
dω (418)

= 〈x〉0 + 〈v(k)〉t (419)

= 〈x〉0 + V t (420)

which is Eq. (51). But here we have obtained it in a very direct manner. Now consider

〈x〉t,ω
〈x〉t,ω =

∫
〈x〉k,t,ω dk =

∫
|B(k, 0)|2

[
〈x〉k,0 + v(k)t

]
δ(ω −W (k)) dk (421)

To simplify this we assume that the solution to the equation ω −W (k) = 0 is k = K(ω).

Then

〈x〉t,ω =

(
∂
∂k
ψ(k, 0)

W ′(k)
− t

)
|B(k, 0)|2k=g(ω) (422)

and this can be similarly interpreted.
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10 Examples

10.1 Spread, contraction time, etc. for: u(x, 0) = (α/π)1/4 e−αx2/2+iβx2/2+ik0x

In this example all quantities can be solved for exactly and hence offers a good case for

verifying the results we have obtained. For the dispersion relation we take

W (k) = ck + γk2/2 (423)

and the initial pulse is taken to be,

u(x, 0) = (α/π)1/4 e−αx
2/2+iβx2/2+ik0x (424)

We define

η = α− iβ (425)

so that

u(x, 0) = (α/π)1/4 e−ηx
2/2++ik0x (426)

and also, for convenience we define

α′ =
α

(α2 + β2)
(427)

β ′ =
β

(α2 + β2)
(428)

The initial spectrum is calculated as follows,

S(k, 0) =
1√
2π

∫
u(x, 0) e−ikx dx (429)

=
(α/π)1/4

√
η

exp

[
−(k − k0)

2

2η

]
(430)

=
(α/π)1/4

√
α− iβ

exp

[
−α(k − k0)

2

2(α2 + β2)
− i

β(k − k0)
2

2(α2 + β2)

]
(431)

=
(α/π)1/4

√
α− iβ

e−α
′(k−k0)2/2−iβ′(k−k0)2/2 (432)

and the time dependent spectrum is therefore

S(k, t) = S(k, 0) e−iW (k)t (433)

=
(α/π)1/4

√
η

exp

[
−(k − k0)

2

2η
− i(ck + γk2/2)t

]
(434)

=
(α/π)1/4

√
α− iβ

exp

[
−α(k − k0)

2

2(α2 + β2)
− i

β(k − k0)
2

2(α2 + β2)
− i(ck + γk2/2)t

]
(435)
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At the initial time, t = 0, the mean and standard deviations of x and k are

〈 x 〉0 = 0 (436)

〈 k 〉0 = k0 (437)

σ2
x|0 =

1

2α
(438)

σ2
k|0 =

α2 + β2

2α
(439)

Also the covariance is

Covxv =
γβ

2α
(440)

The moments are calculated very simply from the time dependent spectrum. The average

group velocity and averaged square are

〈 v 〉 = c+ γk0 (441)

〈 v2 〉 = γ2α
2 + β2

2α
− (c+ γk0)

2 (442)

and therefore the standard deviation of group velocity is

σ2
v = 〈 v2

g 〉 − 〈 v 〉2 (443)

= γ2α
2 + β2

2α
(444)

Hence

〈 x 〉t = (c+ γk0) t (445)

〈 x2 〉t =
1

2α

[
(1 + β γ t)2 + γ2α2 t2

]
+ (c + γk0)

2t2 (446)

and the spread is

σ2
x|t = σ2

x|0
[
1 + 2β γ t+ γ2(α2 + β2) t2

]
(447)

= σ2
x|0 + 2t

γβ

2α
+ t2γ2α

2 + β2

2α
(448)

=
1

2α

[
1 + 2β γ t+ γ2(α2 + β2) t2

]
(449)

=
1

2α

[
(1 + β γ t)2 + γ2α2 t2

]
(450)
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It is also interesting to write σx|t in terms of σx|0

σ2
x|t = σ2

x|0

[
1 + 2βγt+ γ2

(
1

4σ4
x|0

+ β2

)
t2

]
(451)

= σ2
x|0

[
1 + 2βγt+ γ2

σ2
k|0

σ2
x|0
t2

]
(452)

The reason this point is important is that it shows that the spread in time is not a linear

function of the original spread. So for example if we make the initial spread very small the

spread in time will relatively increase. This may be counterintuitive but it is correct and is

a reflection of the uncertainty principle.

Contraction and Spread. The pulse will contract for times

tC ≤ − 2β

γ(α2 + β2)
tM = − β

γ(α2 + β2)
(453)

This can only happen if either γ or β are less than zero, but not both. The minimum width

is

σ2
x|tM = σ2

x|0 −
Cov2

xv|0

σ2
v

=
α2

α2 + β2
σ2
x|0 (454)

Note that β determines whether the pulse will contract and it has to be negative for con-

traction. Also note that the covariance is negative for negative β.

One can also obtain the value of β that will maximize the time of contraction. That will

be the case when α = β

tC ≤ − 1

γβ
tM = − 1

2γβ
=

1

2
tC (455)

and

σ2
x|tM =

1

2
σ2
x|t0 (456)

Thus, the pulse cannot get any narrower than half of its original width.

10.1.1 Exact Solution

Our approach has allowed us to calculate the above quantities exactly and the calculations

have all been done simply and using only the initial pulse and spectrum. That is the

advantage of our method. It is now interesting to verify these with the exact solution for

the pulse. To obtain the exact solution we calculate,

u(x, t) =
1√
2π

∫
S(k, t)eikx (457)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−(k − k0)

2

2η
− i(ck + γk2/2)t+ ikx

]
(458)
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This integral can be done but the answer turns out very complicated. We have found that

by making a simple transformation first one gets a more tractable answer. In particular

letting k → k + k0 we have

u(x, t) =
1√
2π

(α/π)1/4

√
η

∫
exp

[
− k2

2η
− i[c(k + k0) + γ(k + k0)

2/2]t+ i(k + k0)x

]
(459)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−k2(

1

2η
+ iγt/2) + ik(x− ct− γk0t) − i(ck0 + γk0

2/2)t+ ik0x

]

(460)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−k

2

2η
(1 + iηγt) + ik(x− ct− γk0t) + ik0(x− ct) − iγk0

2t/2

]

(461)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−k

2

2η
(1 + iηγt) + ik(x− ct− γk0t) + ik0(x− ct) − iγk0

2t/2

]

(462)

Carrying out the integration one obtains

u(x, t) =
(α/π)1/4

√
1 + iγηt

exp

[
−η

2

(x− ct− k0γt)
2

1 + iγηt
+ ik0(x− ct) − iγk2

0t/2

]
(463)

Using the fact that

1 + iγηt = 1 + γβt+ iγαt (464)

we have that

|1 + iγηt|2 = (1 + β γ t)2 + γ2α2 t2 (465)

= 2ασ2
x|t (466)

Therefore

u(x, t) =
(α/π)1/4

√
1 + iγηt

exp

[
−η

2

(x− ct− k0γt)
2

2ασ2
x|t

(1 + γβt− iγαt) + ik0(x− ct) − iγk2
0t/2

]

(467)

Also,

η(1 − iγηt) = (α− iβ)(1 + γβt− iγαt) (468)

= α− iβ − iγt(α2 + β2) (469)

and hence

u(x, t) =
(α/π)1/4

√
1 + iγηt

exp

[
−(x− ct− k0γt)

2

4ασ2
x|t

[α− iβ − iγt(α2 + β2)] + ik0(x− ct) − iγk2
0t/2

]

(470)
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This allows one to express the answer in terms of phase and amplitude

ue(x, t) =
1

(2πσ2
x|t)

1/4
exp

[
−(x− 〈 x 〉t)2

4σ2
x|t

]

exp

[
i
(x− 〈 x 〉t)2 {β + (α2 + β2)γt}

4ασ2
x|t

+ ik0(x− ct) − ik2
0 γt/2 − iδ

]
(471)

where

δ =
1

2
arctan

αγt

1 + βγt
(472)

The amplitude and phase are

|ue(x, t)| =
1

(2πσ2
x|t)

1/4
exp

[
−(x− 〈 x 〉t)2

4σ2
x|t

]
(473)

ϕe =
(x− 〈 x 〉t)2 {β + (α2 + β2)γt}

4ασ2
x|t

+ k0(x− ct) − k2
0 γt/2 − δ (474)

=
β(x− 〈 x 〉t)2

4ασ2
x|t

+
(x− 〈 x 〉t)2 (α2 + β2)γt

4ασ2
x|t

+ k0(x− ct) − k2
0 γt/2 − δ (475)

=
(x− 〈 x 〉t)2 {β + (α2 + β2)γt}

4ασ2
x|t

+ k0(x− 〈 x 〉t) + k2
0γt/2 − δ (476)

=
1

4γ
(x− 〈 x 〉t)2 d

dt
ln σ2

x|t + k0(x− 〈 x 〉t) + k2
0γt/2 − δ (477)

We also note that the above can be simplified in a different way if one uses

x− ct = x− 〈 x 〉t + k0γt (478)

(x− ct)2 = (x− 〈 x 〉t)2 + 2(x− 〈 x 〉t)k0γt+ k2
0γ

2t2 (479)

10.1.2 Asymptotic Solution

It is also interesting to obtain the classical asymptotic approximation and to compare to the

exact result. We have that

W ′(k) = c+ γk (480)

W ′′(k) = γ (481)

Setting

W ′(k) = c+ γk = x/t (482)

we have that

ks =
x− ct

γt
(483)
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Now,

W (k) = ck + γk2/2 (484)

=
1

2γt
(x− ct)(x + ct) (485)

and also now which gives that

ksx−W (ks)t =
(x− ct)2

2γt
(486)

Also

ks − k0 =
1

γt
(x− ct− k0γt) (487)

=
1

γt
(x− 〈 x 〉t) (488)

where

〈 x 〉t = (c + k0γ) t (489)

The asymptotic solution is

ua(x, t) ∼ S(ks, 0)

√
1

tγ
e−iπ/4 exp

[
i
(x− ct)2

2γt

]
(490)

But

S(k, 0) =
(α/π)1/4

√
η

exp

[
−(x− ct− k0γt)

2

2ηγ2t2

]
(491)

=
(α/π)1/4

√
α− iβ

exp

[
−α(x− ct− k0γt)

2

2(α2 + β2)γ2t2
− i

β(x− ct− k0γt)
2

2(α2 + β2)γ2t2

]
(492)

and therefore

ua(x, t) ∼
(α/π)1/4

√
α− iβ

√
1

γt
e−iπ/4 exp

[
−α(x− ct− k0γt)

2

2(α2 + β2)γ2t2
− i

β(x− ct− k0γt)
2

2(α2 + β2)γ2t2
+i

(x− ct)2

2γt

]

(493)

|ua(x, t)|2 =
1

γt

(α/π)1/2

√
α2 + β2

exp

[
− α(x− 〈 x 〉t)2

(α2 + β2)γ2t2

]
(494)

ϕa ∼ −β ′ (x− 〈 x 〉t)2

2γ2t2
+

(x− ct)2

2γt
(495)

= −β ′ (x− 〈 x 〉t)2

2γ2t2
+

(x− 〈 x 〉t)2

2γt
+ k0(x− 〈 x 〉t) +

1

2
k0γt (496)

=
1

2
(x− 〈 x 〉t)2

[
1

γt
− β ′

γ2t2

]
+ k0(x− 〈 x 〉t) +

1

2
k2

0γt (497)
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where we have used

x− ct = x− 〈 x 〉t + k0γt (498)

(x− ct)2 = (x− 〈 x 〉t)2 + 2(x− 〈 x 〉t)k0γt+ k2
0γ

2t2 (499)

10.1.3 Comparison of Exact with Asymptotic solution

We now compare the asymptotic solution with the exact. In comparing the magnitude of

the asymptotic solution with the exact we see that they are the same if we approximate the

conditional standard deviation for large times by keeping only the quadratic terms

σ2
x|t→∞ =

1

2α
[(α2 + β2)γ2t2] (500)

Whether this is a general feature of the asymptote solution needs further investigation. That

is, can the asymptotic solution be obtained in the following way:. write the parameters of

the initial pulse in terms of the initial position and initial spread and then substitute for

them the exact moments we have shown how to calculate. Is then the asymptotic solution

the one that is obtained when only the quadratic term in the spread is kept?

10.2 Example: u(x, 0) = δ(x)

Suppose we take an impulse at x = 0

u(x, 0) = δ(x) (501)

The initial spectrum is given by

S(k, 0) =
1√
2π

(502)

We consider the case where the dispersion relation is given by

W (k) = ck + γk2/2 (503)

and hence

S(k, t) =
1√
2π
e−i(ck+γk

2/2)t (504)
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u(x, t) =
1√
2π

∫
S(k, t)eikxdk (505)

=
1

2π

∫
eik(x−ct)−iγk

2t/2dk (506)

=
1

2π

√
2π

iγt
exp

[
i
(x− ct)2

2γt

]
(507)

=

√
1

2πiγt
exp

[
i
(x− ct)2

2γt

]
(508)

The exact phase is therefore

ϕ(x, t) =
(x− ct)2

2γt
(509)

and the exact instantaneous frequency is

ωi(x, t) = − ∂

∂t
ϕ(x, t) (510)

= c
(x− ct)

γt
+

(x− ct)2

2γt2
(511)

=
(x− x0 − ct)

2γt2
[2ct + (x− ct)] (512)

=
(x− ct)(x+ ct)

2γt2
(513)

and the exact spatial instantaneous frequency

ki(x, t) =
∂

∂x
ϕ(x, t) (514)

=
(x− ct)

γt
(515)

We now obtain the asymptotic solution. Using

ks =
x− ct

γt
(516)

W (ks) =
1

2γt2
(x− ct)(x + ct) (517)

ksx−W (ks)t =
(x− ct)2

2γt
(518)

we have

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnK′′/4 (519)

=
1√
2π

√
1

γt
eiks(x−ct)−γk2

s t/2−iπγ/4 (520)

=

√
1

i2πγt
exp

[
i
(x− ct)2

2γt

]
(521)
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But

ϕa(x, t) =
(x− ct)2

2γt
(522)

The relation between exact and asymptotic is

ϕa(x, t) = ϕ(x, t) (523)

The instantaneous frequency (asymptotic) is therefore

ωi(x, t) (asymptotic) = ωi(x, t) (exact) (524)

Now let us use the equation from the text to derive the instantaneous frequency,

ωi(x, t) =
x

t2W ′′(ks)

dψ

dks
+W (ks) (525)

We note that
dψ

dks
= 0 (526)

and therefore

ωi(x, t) = W (ks) (527)

=
1

2γt2
(x− ct)(x+ ct) (528)

Also

ki(x, t) =
1

tW ′′(ks)

dψ

dks
+ ks (529)

= ks (530)

=
(x− ct)

γt
(531)

Which agrees with the above

10.3 Example: u(x, 0) = δ(x − x0)

The reason we consider this example, even though we have just done δ(x) will become

apparent

u(x, 0) = δ(x− x0) (532)

The initial spectrum is given by

S(k, 0) =
1√
2π
e−ikx0 (533)
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and hence

S(k, t) =
1√
2π
e−ikx0−i(ck+γk2/2)t (534)

u(x, t) =
1√
2π

∫
S(k, t)eikxdk (535)

=
1

2π

∫
eik(x−x0−ct)−iγk2t/2dk (536)

=
1

2π

√
2π

iγt
exp

[
i
(x− x0 − ct)2

2γt

]
(537)

=

√
1

2πiγt
exp

[
i
(x− x0 − ct)2

2γt

]
(538)

Which of course could have been written down immediately since the solution is translation

invariant. The exact phase is therefore

ϕ(x, t) =
(x− x0 − ct)2

2γt
(539)

and we can write down the answers immediately by letting x→ x− x0

ωi(x, t) = − ∂

∂t
ϕ(x, t) (540)

=
(x− x0 − ct)(x− x0 + ct)

2γt2
(541)

and the exact spatial instantaneous frequency is

ki(x, t) =
∂

∂x
ϕ(x, t) (542)

=
(x− x0 − ct)

γt
(543)

But now we obtain the asymptotic solution. Using

ks =
x− ct

γt
(544)

W (ks) =
1

2γt2
(x− ct)(x + ct) (545)

ksx−W (ks)t =
(x− ct)2

2γt
(546)

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnK′′/4 (547)

=
1√
2π
e−iksx0

√
1

γt
eiks(x−ct)−γk2

s t/2−iπγ/4 (548)

=

√
1

i2πγt
exp

[
i
(x− ct)2

2γt
− i

x− ct

γt
x0

]
(549)
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But

ϕa(x, t) =
(x− ct)2

2γt
− x− ct

γt
x0 (550)

=
(x− ct− x0)

2 − x0
2

2γt
(551)

Thus we see that one can not get the asymptotic solution form the previous case by letting

x→ x− x0. The relation between exact and asymptotic is

ϕa(x, t) = ϕ(x, t) − x0
2

2γt
(552)

The instantaneous frequency (asymptotic) is therefore

ωi(x, t) (asymptotic) = ωi(x, t) (exact) − x0
2

2γt2
(553)

ki(x, t) (asymptotic) = ki(x, t) (exact) (554)

Now let us use

ωi(x, t) =
x

t2W ′′(ks)

dψ

dks
+W (ks) (555)

to derive the instantaneous frequency. We note that

dψ

dks
= −x0 (556)

and therefore

ωi(x, t) =
x

t2γ
(−x0) +W (ks) (asymptotic) (557)

=
1

2γt2
(x− ct)(x + ct) − xx0

γt2
(558)

But

(x− ct)(x + ct) = (x− x0 − ct)(x− x0 + ct) − x2
0 + 2xx0 (559)

and therefore

ωi(x, t) =
1

2γt2
(x− ct)(x + ct) − xx0

γt2
(560)

=
1

2γt2
(x− x0 − ct)(x− x0 + ct) − x0

2

2γt2
(561)

which is the same as Eq. (552). Also,
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ki(x, t) =
1

tW ′′(ks)

dψ

dks
+ ks = (562)

=
1

γt
(−x0) +

x− ct

γt
(563)

=
x− x0 − ct

γt
(564)

which agrees with the above.
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10.4 Example: u(x, 0) = eik0x

Suppose at x = 0 we take

u(x, 0) =
1√
2π
eik0x (565)

The initial spectrum is given by

S(k, 0) = δ(k − k0) (566)

We consider the case where the dispersion relation is given by

W (k) = ck + γk2/2 (567)

The time dependent spectrum is

S(k, t) = δ(k − k0)e
−i(ck+γk2/2)t (568)

and the exact answer is

u(x, t) =
1√
2π

∫
S(k, t)eikxdk (569)

=
1√
2π
e−i(ck0+γk2

0/2)t+ik0x (570)

The exact phase is therefore

ϕ(x, t) = −(ck0 + γk2
0/2)t+ k0x (571)

and the exact instantaneous frequency is

ωi(x, t) = − ∂

∂t
ϕ(x, t) (572)

= ck0 + γk2
0/2 (573)

= W (k0) (exact) (574)

and the exact spatial instantaneous frequency is

ki(x, t) = k0 (exact) (575)

We now obtain the asymptotic solution. From before we have that

ks =
x− ct

γt
(576)

ksx−W (ks)t =
(x− ct)2

2γt
(577)
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and therefore

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnK′′/4 (578)

=
1√
i
δ(ks − k0)

√
1

γt
exp

[
i
(x− ct)2

2γt

]
(579)

=
1√
i
δ(
x− ct

γt
− k0)

√
1

γt
exp

[
i
(x− ct)2

2γt

]
(580)

=
1√
i
δ(x− ct− γtk0)

√
γt exp

[
i
(x− ct)2

2γt

]
(581)

and therefore the asymptotic phase is

ϕa(x, t) =
(x− ct)2

2γt
(582)

= k2
0γt/2 (583)

The instantaneous frequency (asymptotic) is (note that we must differentiate Eq. (582) and

not Eq. (583)

ωi(x, t) = c
(x− ct)

γt
+

(x− ct)2

2γt2
(asymptotic) (584)

= c
(x− ct)

γt
+

(x− ct)2

2γt2
(585)

=
2(x− ct)ct+ (x− ct)2

2γt2
(586)

=
(x− ct)(x + ct)

2γt2
(587)

= W (ks) (588)

= W (k0) (589)

and for this case we have that the exact equals the asymptotic. Also,

ki(x, t) = c
(x− ct)

γt
(asymptotic) (590)

= c ks (asymptotic) (591)

= c ks (592)

Now we use

ωi(x, t) =
x

t2W ′′(ks)

dψ

dks
+W (ks) (593)

and using
dψ

dks
= 0 (594)
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we have

ωi(x, t) = W (ks) (asymptotic) (595)

= W (k0) (596)

Which is the same as Eq. (574).

Also

ki(x, t) =
1

tW ′′(ks)

dψ

dks
+ ks (asymptotic) (597)

= ks (598)

= k0 (599)
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10.5 Example: u(x, 0) = eiβx2/2+ik0x

At t = 0 we take

u(x, 0) = eiβx
2/2+ik0x (600)

The initial spectrum is given by

S(k, 0) =

√
i

β
exp

[
−i(k − k0)

2

2β

]
(601)

We consider the case where the dispersion relation is given by

W (k) = ck + γk2/2 (602)

and hence

S(k, t) =

√
i

β
exp

[
−i(k − k0)

2

2β
− iW (k)t

]
(603)

u(x, t) =
1√
2π

∫
S(k, t)eikx (604)

=
1√
2π

1√
−iβ

∫
exp

[
i
(k − k0)

2

2β
− i(ck + γk2/2)t+ ikx

]
(605)

=
1√
2π

1√
−iβ

∫
exp

[
−i k

2

2β
− i[c(k + k0) + γ(k + k0)

2/2]t+ i(k + k0)x

]
(606)

=
1√
2π

1√
−iβ

∫
exp

[
−k2(− 1

2iβ
+ iγt/2) + ik(x− ct− γk0t) − i(ck0 + γk0

2/2)t+ ik0x

]

(607)

=
1√
2π

1√
−iβ

∫
exp

[
k2

2β
(1 + iβγt) + ik(x− ct− γk0t) + ik0(x− ct) − iγk0

2t/2

]

(608)

=
1√
2π

1√
−iβ

∫
exp

[
−i k

2

2β
(1 + βγt) + ik(x− ct− γk0t) + ik0(x− ct) − iγk0

2t/2

]

(609)

=
1√

1 + γβt
exp

[
i
β

2

(x− ct− k0γt)
2

1 + γβt
+ ik0(x− ct) − iγk2

0t/2

]
(610)

The exact phase is therefore

ϕ(x, t) =
β

2

(x− ct− k0γt)
2

1 + γβt
+ k0(x− ct) − γk2

0t/2 (611)
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and the exact instantaneous frequency is

ωi(x, t) = − ∂

∂t
ϕ(x, t) (612)

= (c+ k0γ)
β(x− ct− k0γt)

(1 + γβt)
+ γ

β2(x− ct− k0γt)
2

2(1 + γβt)2
+ k0c+ γk2

0/2 (613)

=
β(x− ct− k0γt)

1 + γβt

[
(c+ k0γ) + γ

β(x− ct− k0γt)

2(1 + γβt)

]
+ k0c+ γk2

0/2 (614)

and the exact spatial instantaneous frequency is

ki(x, t) =
β(x− ct− k0γt)

(1 + γβt)
+ k0 (615)

Thus it still remains a chirp but with a different chirp rate.

We now obtain the asymptotic solution. We have that

ks =
x− ct

γt
(616)

W (ks) =
(x− ct)(x+ ct)

2γt2
(617)

ks − k0 =
x− ct− k0γt

γt
(618)

ksx−W (ks)t =
(x− ct)2

2γt
(619)

and therefore

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnK′′/4 (620)

=

√
i

β
exp

[
−i(k − k0)

2

2β

]√
1

γt
eiks(x−ct)−γk2

s t/2−iπ/4 (621)

=

√
1

γβt
exp

[
−i(x− ct− γtk0)

2

2βγ2t2
+ i

(x− ct)2

2γt

]
(622)

where we have used the fact that

e−iπ/4 =
1√
i

(623)
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and therefore the asymptotic phase is

ϕa(x, t) = −(x− ct− γtk0)
2

2βγ2t2
+

(x− ct)2

2γt
(624)

=
βγt(x− ct)2 − (x− ct− γtk0)

2

2βγ2t2
= (625)

=
(x− ct)2(βγt− 1) + 2(x− ct)γtk0 − (γtk0)

2

2βγ2t2
(626)

= −(x− ct− γtk0)
2

2βγ2t2
+

(x− ct− γtk0)
2

2γt
+
γtk0

2

2
+ (x− ct− γtk0)k0 (627)

ωi(x, t) =
x

t2W ′′(ks)

dψ

dks
+W (ks) (628)

We note that

dψ

dks
= −(k − k0)

β
(629)

= −x− ct− k0γt

βγt
(630)

and therefore

ωi(x, t) = − x

γt2
x− ct− k0γt

βγt
+

(x− ct)(x + ct)

2γt2
(asymptotic) (631)

= −xx − ct− k0γt

βγ2t3
+

(x− ct)(x + ct)

2γt2
(632)

Also,

ki(x, t) =
1

tW ′′(ks)

dψ

dks
+ ks (asymptotic) (633)

= −x− ct− k0γt

βγ2t2
+
x− ct

γt
(634)

= −x− ct− k0γt

βγ2t2
+
x− ct− k0γt

γt
+ k0 (635)
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10.6 Example: u(0, t) = eiω0t

We consider the case where the dispersion relation is given by

K(ω) = γω2/2 (636)

and at x = 0

u(0, t) = eiω0t (637)

Its spectrum is

F (ω, 0) =
√

2πδ(ω − ω0) (638)

and hence,

F (ω, x) =
√

2πδ(ω − ω0)e
−iγω2x/2 (639)

and therefore

u(x, t) =
1√
2π

∫
F (ω, x)eiωtdω (640)

= e−iγω
2
0x/2+jω0t (641)

and we see that the phase is given by

ϕ(x, t) = −γω2
0x/2 + ω0t (642)

which gives

ωi(x, t) =
∂

∂t
ϕ(x, t) (643)

= ω0 (644)

and the spatial local frequency by

ki(x, t) = − ∂

∂t
ϕ(x, t) (645)

= γω2
0/2 (646)

We now use the equations derived for the asymptotic answer. We have to first obtain ωs

K ′(ωs) = t/x = γωs (647)

and hence

ωs =
t

γx
(648)

Further for our case we have that
∂ψ

∂ω
= 0 (649)
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Now

ωi(x, t) =
1

xK ′′(ω)

∂ψ

∂ω
+ ωs (650)

=
t

γx
(651)

and also

ki(x, t) =
t

x2K ′′(ωs)

dψ

dωs
+K(ωs) (652)

= K(ωs) (653)

= γω2
s/2 (654)

=
γt

2x
(655)

and we see the answers do not agree. We now explore why this should be case. Consider

the asymptotic signal itself

ua(x, t) ∼ F (ω, 0)

√
1

xK ′′(ω)
eiωt−iK(ω)x−iπsgnK′′/4|ω=ωs (656)

Let us first work out that

ωt−K(ω)x =
t2

2γx
(657)

and here the asymptotic solution is

ua(x, t) ∼ F (ω, 0)

√
1

xK ′′(ω)
eiωt−iK(ω)x−iπsgnK′′/4|ω=ωs (658)

=
√

2πδ(
t

γx
− ω0)

√
1

xγ
exp

[
i
t2

2γx

]
(659)

Hence because of the delta function we now obtain

ωi(x, t) =
t

γx
= ω0 (660)

and also

ki(x, t) =
γt

2x
(661)

=
γ2ω0

2
(662)

which still does not agree with the correct answer. However if we take the asymptotic signal

and rewrite it as

ua(x, t) ∼
√

2πδ(
t

γx
− ω0)

√
1

xγ
exp

[
i
t2

2γx

]
(663)

=
√

2πδ(
t

γx
− ω0)

√
1

xγ
exp

[
i
t2

2γx

]
(664)
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then one would get the right answer if one differentiates the phase. What this example shows

is that a further clarification is needed when one deals with delta functions. In particular

for this case it is not clear which should be done first, the delta function substitution or the

differentiations.
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10.7 Example: u(0, t) = δ(t − t0)

Suppose we take an impulse at x = 0

u(0, t) = δ(t− t0) (665)

The initial spectrum is given by

F (ω, 0) =
1√
2π
e−iωt0 (666)

and hence

F (ω, x) =
1√
2π
e−iγω

2x/2−iωt0 (667)

the exact answer is

u(x, t) =
1√
2π

∫
F (ω, x)eiωtdω (668)

=
1

2π

∫
e−iγω

2x/2−iω(t0−t)dω (669)

=
1

2π

√
2π

iγx
exp

[
i
(t− t0)

2

2γx

]
(670)

and we see that the phase is given by

ϕ(x, t) =
(t− t0)

2

2γx
(671)

which gives

ωi(x, t) =
∂

∂t
ϕ(x, t) (672)

=
t− t0
γx

(673)

and the spatial local frequency by

ki(x, t) = − ∂

∂x
ϕ(x, t) (674)

=
(t− t0)

2

2γx2
(675)

We now use the formulas derived in the text

K ′(ωs) = t/x = γωs (676)
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and hence

ωs =
t

γx
(677)

K(ωs) = γω2
s/2 =

t2

2γx2
(678)

Now
∂ψ(ω, 0

∂ω
= −t0 (679)

and hence

ωi(x, t) =
1

xK ′′(ω)

∂ψ

∂ω
+ ωs (680)

=
1

xγ
(−t0) +

t

γx
(681)

=
t− t0
γx

(asymptotic) (682)

which is the same as the exact.

ki(x, t) =
t

x2K ′′(ωs)

dψ

dωs
+K(ωs) (683)

=
t

x2γ
(−t0) +

t2

2γx2
(684)

=
t2 − tt0
2γx2

(685)

consider the asymptotic signal itself.

ua(x, t) ∼ F (ω, 0)

√
1

xK ′′(ω)
eiωt−iK(ω)x−iπsgnK′′/4|ω=ωs (686)

Let us first work out that

ωt−K(ω)x =
t2

2γx
(687)

and here the asymptotic solution is

ua(x, t) ∼ F (ω, 0)

√
1

xK ′′(ω)
eiωt−iK(ω)x−iπsgnK′′/4|ω=ωs (688)

=
1√
2π

√
1

xγ
exp[i

t2

2γx
− t

γx
t0] (689)
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10.8 Example: u(0, t) = (α/π)1/4 e−αt2/2+jω0t

For the signal

u(0, t) = (α/π)1/4 e−αt
2/2+jω0t (690)

the initial special spectrum is

F (ω) =
(α/π)1/4

√
α

exp

[
−(ω − ω0)

2

2α

]
(691)

and the exact solution is

u(x, t) =
(α/π)1/4

√
2α

√
1

1
2
α− iγx

exp

[
−ω

2
0

2α
+

(it+ ω0

α
)

4( 1
2α

− iγx)

]
(692)

The phase and amplitude are

ϕ(x, t) =
−γxt2 − ω0t/α

2 + ω0γx/α
2

4
[
( 1

2α
)2 + γ2x2

] +
1

2
arctan

2γx

α
(693)

=
−γxα2t2 − ω0t+ ω0γx

1 + 4α2γ2x2
+

1

2
arctan

2γx

α
(694)

|u(x, t)| =
(α/π)1/4

√
2α

(
1

α/4 + γ2x2

)2

exp

[
−1

2
α

(
t2 − 4ω0γx(t− ω0γx)

1 + 4α2γ2x2

)]
(695)

This gives

ωi(x, t) =
ω0 + 2α2γxt

1 + 4α2γ2x2
(696)

This is a chirp even though a pure sine wave is being generated at x = 0. In fact, even for

ω = 0 we have a chirp.
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10.9 Example: u(0, t) = eiβt2/2+jω0t

We take

u(0, t) = eiβt
2/2+iω0t (697)

which is a chirp. We have

F (ω, 0) =

√
i

β
exp

[
−i(ω − ω0)

2

2β

]
(698)

and hence,

F (ω, x) =

√
i

β
exp

[
−i(ω − ω0)

2

2β
− iγω2x/2

]
(699)

and therefore

u(x, t) =
1√
2π

∫
F (ω, x)eiωtdω (700)

=

√
i

2πβ

∫
exp

[
−i(ω − ω0)

2

2β
− iγω2x/2 + iωt

]
dω (701)

=

√
i

2πβ

∫
exp

[
−iω

2

2β
− iγ(ω + ω0)

2x/2 + i(ω + ω0)t

]
dω (702)

=

√
i

2πβ

∫
exp

[
−iω

2

2β
(1 + βγx) + iω(t− γω0x) − iγω2

0x/2 + iω0t

]
dω (703)

=

√
1

1 + βγx
exp

[
i
β(t− γω0x)

2

2(1 + βγx)
− iγω2

0x/2 + iω0t

]
(704)

and we see that the phase is given by

ϕ(x, t) =
β(t− γω0x)

2

2(1 + βγx)
− ω2

0γx/2 + ω0t (705)

which gives

ωi(x, t) =
∂

∂t
ϕ(x, t) (706)

= β
t− γω0x

1 + βγx
+ ω0 (707)

and the spatial local frequency by

ki(x, t) = − ∂

∂x
ϕ(x, t) (708)

= γω0
β(t− γω0x)

(1 + βγx)
+ βγ

β(t− γω0x)
2

(1 + βγx)2
− γω2

0/2 (709)
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We now compare to the asymptotic solution. We have

K ′(ω) = γω =
t

x
(710)

and that gives

ω =
t

γx
(711)

Therefore,

F (ω =
t

γx
) =

(β/π)1/4

√
β

exp

[
−(t− γω0x)

2

γ2x2β

]
(712)

and hence

u(x, t) =

√
1

γβx
exp

[
−i(t− γω0x)

2

2γ2x2β
+ i

t2

2γx
− iπsgnγ/4

]
(713)

This gives an instantaneous frequency

ωi =
t

γx
(714)

10.10 Example: u(0, t) = (α/π)1/4 e−αt2/2+iβt2/2+iω0t

This example is mathematically identical to the example previously considered and hence

we do not give the details but just the results. We take

K(ω) = Dω + γω2/2 (715)

and the initial pulse is taken to be,

u(0, t) = (α/π)1/4 e−αt
2/2+iβt2/2+iω0t (716)

Defining

η = α− iβ (717)

so that

u(0, t) = (α/π)1/4 e−ηt
2/2++iω0t (718)

and where as before

α′ =
α

(α2 + β2)
(719)

β ′ =
β

(α2 + β2)
(720)
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The initial spectrum is

F (ω, 0) =
1√
2π

∫
u(0, t) e−iωt dt (721)

=
(α/π)1/4

√
η

exp

[
−(ω − ω0)

2

2η

]
(722)

=
(α/π)1/4

√
α− iβ

exp

[
−α(ω − ω0)

2

2(α2 + β2)
− i

β(ω − ω0)
2

2(α2 + β2)

]
(723)

=
(α/π)1/4

√
α− iβ

e−α
′(ω−ω0)2/2−iβ′(ω−ω0)2/2 (724)

and further

F (ω, x) = F (ω, 0) e−iK(ω)x (725)

=
(α/π)1/4

√
η

exp

[
−(ω − ω0)

2

2η
− i(Dω + γω2/2)x

]
(726)

=
(α/π)1/4

√
α− iβ

exp

[
−α(ω − ω0)

2

2(α2 + β2)
− i

β(ω − ω0)
2

2(α2 + β2)
− i(Dω + γω2/2)x

]
(727)

At the initial position, x = 0, the mean and standard deviations of t and ω are

〈 t 〉0 = 0 (728)

〈ω 〉0 = ω0 (729)

σ2
t|0 =

1

2α
(730)

σ2
ω|0 =

α2 + β2

2α
(731)

and also

Covtτ =
γβ

2α
(732)

The average transit time and averaged square are

〈 τ 〉 = D + γω0 (733)

〈 τ 2 〉 = γ2α
2 + β2

2α
− (D + γω0)

2 (734)

and therefore the standard deviation of transit time is

σ2
τ = 〈 τ 2 〉 − 〈 τ 〉2 (735)

= γ2α
2 + β2

2α
(736)
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Hence

〈 t 〉x = (D + γω0) x (737)

〈 t2 〉x =
1

2α

[
1 + 2β γ x + γ2(α2 + β2) x2

]
+ (D + γω0)

2 x2 (738)

and the spread is

σ2
t|x = σ2

t|0
[
1 + 2β γ x+ γ2(α2 + β2) x2

]
(739)

= σ2
t|0 + 2x

γβ

2α
+ x2γ2α

2 + β2

2α
(740)

=
1

2α

[
1 + 2β γ x + γ2(α2 + β2) x2

]
(741)

=
1

2α

[
(1 + β γ x)2 + γ2α2 x2

]
(742)

Also,

σ2
t|x = σ2

t|0

[
1 + 2βγx+ γ2

(
1

4σ4
t|0

+ β2

)
x2

]
(743)

= σ2
t|0

[
1 + 2βγx+ γ2

σ2
ω|0

σ2
t|0
x2

]
(744)

Contraction and Spread. The pulse will contract for positions

xC ≤ − 2β

γ(α2 + β2)
xM = − β

γ(α2 + β2)
(745)

This can only happen if either γ or β are less than zero, but not both. The minimum width

is

σ2
t|xM

= σ2
t|0 −

Cov2
tτ |0

σ2
τ

=
α2

α2 + β2
σ2
t|0 (746)

One can also obtain the value of β that will maximize the time of contraction. That will

be the case when α = β

xC ≤ − 1

γβ
xM = − 1

2γβ
=

1

2
xC (747)

and

σ2
t|xM

=
1

2
σ2
t|x0

(748)

Exact Solution. To obtain the exact solution we calculate,

u(t, x) =
1√
2π

∫
F (ω, x)eiωt (749)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−(ω − ω0)

2

2η
− i(Dω + γω2/2)x+ iωt

]
(750)
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and hence

u(t, x) =
1√
2π

(α/π)1/4

√
η

∫
exp

[
− ω2

2η
− i[D(ω + ω0) + γ(ω + ω0)

2/2]x+ i(ω + ω0)t

]
(751)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−ω2(

1

2η
+ iγx/2) + iω(t−Dx− γω0x) − i(Dω0 + γω0

2/2)x+ iω0t

]

(752)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−ω

2

2η
(1 + iηγx) + iω(t−Dx− γω0x) + iω0(t−Dx) − iγω0

2x/2

]

(753)

=
1√
2π

(α/π)1/4

√
η

∫
exp

[
−ω

2

2η
(1 + iηγx) + iω(t−Dx− γω0x) + iω0(t−Dx) − iγω0

2x/2

]

(754)

Carrying out the integration one obtains

u(t, x) =
(α/π)1/4

√
1 + iγηx

exp

[
−η

2

(t−Dx− ω0γx)
2

1 + iγηx
+ iω0(t−Dx) − iγω2

0x/2

]
(755)

Using

1 + iγηx = 1 + γβx+ iγαx (756)

we have that

|1 + iγηx|2 = (1 + β γ x)2 + γ2α2 x2 (757)

= 2ασ2
t|x (758)

Therefore

u(t, x) =
(α/π)1/4

√
1 + iγηx

exp

[
−η

2

(t−Dx− ω0γx)
2

2ασ2
t|x

(1 + γβx− iγαx) + iω0(t−Dx) − iγω2
0x/2

]

(759)

Also,

η(1 − iγηx) = (α− iβ)(1 + γβx− iγαx) (760)

= α− iβ − iγx(α2 + β2) (761)

and hence

u(t, x) =
(α/π)1/4

√
1 + iγηx

exp

[
−(t−Dx− ω0γx)

2

4ασ2
t|x

[α− iβ − iγx(α2 + β2)] + iω0(t−Dx) − iγω2
0x/2

]

(762)
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and also,

ue(t, x) =
1

(2πσ2
t|x)

1/4
exp

[
−(t− 〈 t 〉x)2

4σ2
t|x

]

exp

[
i
(t− 〈 t 〉x)2 {β + (α2 + β2)γx}

4ασ2
t|x

+ iω0(t−Dx) − iω2
0 γx/2 − iδ

]
(763)

where

δ =
1

2
arctan

αγx

1 + βγx
(764)

The amplitude and phase are

|ue(t, x)| =
1

(2πσ2
t|x)

1/4
exp

[
−(t− 〈 t 〉x)2

4σ2
t|x

]
(765)

ϕe =
(t− 〈 t 〉x)2 {β + (α2 + β2)γx}

4ασ2
t|x

+ ω0(t−Dx) − ω2
0 γx/2 − δ (766)

=
β(t− 〈 t 〉x)2

4ασ2
t|x

+
(t− 〈 t 〉x)2 (α2 + β2)γx

4ασ2
t|x

+ ω0(t−Dx) − ω2
0 γx/2 − δ (767)

=
(t− 〈 t 〉x)2 {β + (α2 + β2)γx}

4ασ2
t|x

+ ω0(t− 〈 t 〉x) + ω2
0γx/2 − δ (768)

=
1

4γ
(t− 〈 t 〉x)2 d

dx
ln σ2

t|x + ω0(t− 〈 t 〉x) + ω2
0γx/2 − δ (769)

We also note that the above can be simplified in different ways if one uses

t−Dx = t− 〈 t 〉x + ω0γx (770)

(t−Dx)2 = (t− 〈 t 〉x)2 + 2(t− 〈 t 〉x)ω0γx + ω2
0γ

2x2 (771)

Asymptotic Solution. We have that

W ′(ω) = D + γω (772)

W ′′(ω) = γ (773)

Setting

W ′(ω) = D + γω = t/x (774)

we obtain

ωs =
t−Dx

γx
(775)
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Now,

K(ω) = Dω + γω2/2 (776)

=
1

2γx
(t−Dx)(t+Dx) (777)

and also

ωst−K(ωs)x =
(t−Dx)2

2γx
(778)

In addition

ωs − ω0 =
1

γx
(t−Dx− ω0γx) (779)

=
1

γx
(t− 〈 t 〉x) (780)

where

〈 t 〉x = (D + ω0γ) x (781)

The asymptotic solution is

ua(t, x) ∼ F (ωs, 0)

√
1

xγ
e−iπ/4 exp

[
i
(t−Dx)2

2γx

]
(782)

But

F (ω, 0) =
(α/π)1/4

√
η

exp

[
−(t−Dx− ω0γx)

2

2ηγ2x2

]
(783)

=
(α/π)1/4

√
α− iβ

exp

[
−α(t−Dx− ω0γx)

2

2(α2 + β2)γ2x2
− i

β(t−Dx− ω0γx)
2

2(α2 + β2)γ2x2

]
(784)

and therefore

ua(t, x) ∼
(α/π)1/4

√
α− iβ

√
1

γx
e−iπ/4 exp

[
−α(t−Dx− ω0γx)

2

2(α2 + β2)γ2x2
− i

β(t−Dx− ω0γx)
2

2(α2 + β2)γ2x2
+i

(t−Dx)2

2γx

]

(785)

|ua(t, x)|2 =
1

γx

(α/π)1/2

√
α2 + β2

exp

[
− α(t− 〈 t 〉x)2

(α2 + β2)γ2x2

]
(786)

ϕa ∼ −β ′ (t− 〈 t 〉x)2

2γ2x2
+

(t−Dx)2

2γx
(787)

= −β ′ (t− 〈 t 〉x)2

2γ2x2
+

(t− 〈 t 〉x)2

2γx
+ ω0(t− 〈 t 〉x) +

1

2
ω0γx (788)

=
1

2
(t− 〈 t 〉x)2

[
1

γx
− β ′

γ2x2

]
+ ω0(t− 〈 t 〉x) +

1

2
ω2

0γx (789)
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where we have used

t−Dx = t− 〈 t 〉x + ω0γx (790)

(t−Dx)2 = (t− 〈 t 〉x)2 + 2(t− 〈 t 〉x)ω0γx + ω2
0γ

2x2 (791)

11 Future Research

There are a number of directions that the above idea of pulse propagation should be extended

to.

1. The case with damping should be investigated and the formalism developed here

should be extended to handle that case.

2. Can these methods presented be generalized to equations with non-constant coeffi-

cients?

3. The Gabor procedure for a pulse needs investigation. That is a proper analysis of the

concept of an analytic signal for a pulse has not been done.

4. Instantaneous frequency and local spatial frequency have been obtained for the as-

ymptotic solution. One should try to improve on this.

5. Exact calculation of moments. We have shown that the moments can be calculated

exactly and easily. Can these moments be used to construct a better approximation than the

classical asymptotic approximation? That is construct an approximation to |u(x, t)|2 and in

particular

Find an approximation to: |u(x, t)|2 Given : (792)

u(x, 0) and (793)

〈 xn 〉t n = 1, N (794)

There are many methods to construct densities from a given set of moments and it would be

interesting to apply these methods. Note that in this formulation one would only approxi-

mate |u(x, t)|2 , that is the magnitude. But if we add to this the time moments, then it may

be possible to also get the phase to a better approximation.

6. Can the methods and models developed here by applied to nonlinear wave equations?

7. The accuracy of the Wigner approximation scheme needs further investigation.

8. Can one obtain equations of motion for the amplitude and phase separately? We write

u(x, t) = R(x, t)eiϕ(x,t) (795)
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We have been able to show that

∂R

∂t
=

1

R
Im u∗(x, t)W (K)u(x, t) (796)

∂ϕ

∂t
= −1

ρ
Re u∗(x, t)W (K)u(x, t) (797)

Can these equations be solved directly for phase and amplitude?

9. The Wigner distribution approach should be generalized to other distributions \cite{cohen66,rev,book}

12 References
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A Appendix: Notation for Part A

k Spatial Frequency (wave number)

ω Frequency

u(x, t) = A(x, t)eiϕ(x,t) Pulse at position x and time t

A(x, t), ϕ(x, t) Amplitude and phase of pulse

ω = W (k) Dispersion relation

v(k) = W ′(k) Group velocity

u(x, t) = 1√
2π

∫
S(k, 0) eikx−iW (k)t dk General solution for a pulse

S(k, 0) = 1√
2π

∫
u(x, 0) e−ikx dx Spatial spectrum at time zero

S(k, t) = S(k, 0) e−iW (k)t Spatial spectrum at time t

= 1√
2π

∫
u(x, t) e−ikx dx Spatial spectrum at time t

S(k, t) = B(k, t)ejψ(k,t) Spatial spectrum in terms of amplitude and phase

B(k, t), ψ(k, t) Amplitude and phase of spatial spectrum

X = i ∂
∂k

position operator in k space

〈 xn 〉t =
∫
xn |u(x, t)|2 dx Spatial moments of a pulse at time t

V =
∫
v(k) |S(k, 0)|2 dk Average group velocity

σ2
v Standard deviation of group velocity

Covxv|t Covariance of position and group velocity at time t

ρ
xv|t Correlation coefficient

tC Time of contraction

tM Time at minimum contraction

ωi(x, t) = − ∂
∂t
ϕ(x, t) Instantaneous frequency

ki(x, t) = ∂
∂x
ϕ(x, t) Local spatial frequency
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B Appendix: Notation for Part B

k Spatial Frequency (wave number)

ω Frequency

u(x, t) = A(x, t)eiϕ(x,t) Pulse at position x and time t

A(x, t), ϕ(x, t) Amplitude and phase of pulse

k = K(ω) Dispersion relation

τ(ω) = K ′(ω) Transit time

u(x, t) = 1√
2π

∫
F (ω, 0) eiωt−iK(ω)x dω General solution for a pulse

F (k, 0) = 1√
2π

∫
u(x, 0) e−iωt dt Spectrum at time zero

F (ω, x) = F (k, 0) e−iK(ω)x Sspectrum at position x

F (ω, x) = 1√
2π

∫
u(x, t) e−iωt dt Spectrum at position x

F (ω, x) = B(ω, x)ejψ(ω,x) Spectrum in terms of amplitude and phase

B(ω, x), ψ(ω, x) Amplitude and phase of spectrum

T = i ∂
∂ω

Time operator in ω space

〈 tn 〉x =
∫
tn |u(x, t)|2 dt Time Moments of a pulse at x

T =
∫
τ(ω) |F (k, 0)|2 dω Mean transit time

σ2
τ Standard deviation of transit time

Covtτ |x Covariance of time and transit time at x

ρtτ |x Correlation coefficient

xC Positions where pulse is contracted

xM Position of minimum contraction

ωi(x, t) = ∂
∂t
ϕ(x, t) Instantaneous (time) frequency

ki(x, t) = − ∂
∂x
ϕ(x, t) Local spatial frequency
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C Appendix: Moments

In this appendix we give the derivations of the moments of a pulse. As pointed out in the

text the spatial moments of a pulse as a function of time can be calculated directly and

easily from the initial spectrum. In particular we have that in general:

〈 xn 〉t =

∫
xn |u(x, t)|2 dx (798)

=

∫
S∗(k, t)X n S(k, t) dk (799)

where X is the position operator in the k representation

X = i
∂

∂k
(800)

And again as we pointed out, what makes the calculation easy in the spectral Fourier

domain is that the time dependent spectrum is

S(k, t) = S(k, 0) e−iW (k)t (801)

First we list here different expressions for the moments that are useful

〈 x 〉t =

∫
x |u(x, t)|2 dx (802)

=

∫
S∗(k, t)XS(k, t) dk (803)

〈 x2 〉t =

∫
x2 |u(x, t)|2 dx (804)

=

∫
S∗(k, t)X 2S(k, t) dk (805)

=

∫
|XS(k, t)|2 dk (806)

σx|t =

∫
(x− 〈 x 〉t)2 |u(x, t)|2 dx (807)

= 〈 x2 〉t − (〈 x 〉t)2 (808)

=

∫
S∗(k, t)(X − 〈 x 〉t)2S(k, t) dk (809)

=

∫
|(X − 〈 x 〉t)S(k, t)|2 dk (810)

First Moment. We have

〈 x 〉t =

∫
x |u(x, t)|2 dx =

∫
S∗(k, t)X S(k, t) dk (811)
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but

XS(k, t) = i
∂

∂k
S(k, t) =

(
i
∂

∂k
S(k, 0) + tvS(k, 0)

)
e−iW (k)t (812)

and therefore

〈x〉t =

∫
S∗(k, 0)XS(k, 0) dk + t

∫
v|S(k, 0)|2 dk (813)

= 〈x〉0 + t

∫
v|S(k, 0)|2 dk (814)

= 〈x〉0 + t〈v〉0 (815)

Second Moment. For the second moment we do it two different ways. First by way of Eq.

(806) and then directly by way of Eq. (805). We calculate

|XS(k, t)|2 =

∣∣∣∣
(
i
∂

∂k
S(k, 0) + tvS(k, 0)

)
e−iW (k)t

∣∣∣∣
2

(816)

=

∣∣∣∣
(
i
∂

∂k
S(k, 0) + tvS(k, 0)

)∣∣∣∣ (817)

=

(
−i ∂
∂k
S∗(k, 0) + tvS∗(k, 0)

)(
i
∂

∂k
S(k, 0) + tvS(k, 0)

)
(818)

= |XS(k, 0)|2 + t2 v2 |S(k, 0)|2 + i t[vS∗(k, 0)
∂

∂k
S(k, 0) − vS(k, 0)

∂

∂k
S∗
k(k, 0)]

(819)

and therefore

〈 x2 〉t =

∫
|XS(k, 0)|2 dk + t2

∫
v2 |S(k, 0)|2 dk

= i t

∫ [
[vS∗(k, 0)

∂

∂k
S(k, 0) − vS(k, 0)

∂

∂k
S∗
k(k, 0)

]
dk (820)

= i t

∫ [
vS∗(k, 0)

∂

∂k
S(k, 0)+S∗(k, 0)

∂

∂k
vS(k, 0)

]
(821)

= 〈 x2 〉0 + t

∫
S∗(k, 0)[v,X ]+S(k, 0) dk + t2 〈 v2 〉 (822)

= 〈 x2 〉0 + t 〈 [v,X ]+ 〉0 + t2 〈 v2 〉 (823)

where

[v,X ]+ = iv
∂

∂k
+i

∂

∂k
v (824)

= vX + X v (825)
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We now do it the second way, that is by way of Eq. (805),

X 2S(k, t) = i2
∂2

∂k2
S(k, t) (826)

= i2
∂2

∂k2
S(k, 0) e−iW (k)t (827)

=

[
− ∂2

∂k2
S(k, 0) + it

(
dv

dk
S(k, 0) + 2v

∂S

∂k

)
+ v2t2S(k, 0)

]
e−iW (k)t (828)

and therefore we obtain

〈x2〉t = 〈x2〉0 + it

∫
v

(
S∗(k, 0)

d

d
S(k, 0)k − S(k, 0)

dS∗(k, 0)

dk

)
dk + t2〈v2〉0 (829)

= 〈x2〉0 + it

∫
S∗(k, 0)

(
v
d

dk
+

d

dk
v

)
S(k, 0) dk + t2〈v2〉0 (830)

= 〈 x2 〉0 + t 〈 [v,X ]+ 〉0 + t2 〈 v2 〉 (831)

as before.

Standard Deviation or Spread. The standard deviation is therefore

σ2
x|t = 〈 x2 〉t − 〈 x 〉2t = 〈 x2 〉0 + t2 〈 v2 〉 + t 〈 [v,X ]+ 〉0 − [ 〈 x 〉 + t〈 v 〉 ]2 (832)

or

σ2
x|t = σ2

x|0 + 2tCovxv + t2 σ2
v (833)

where

Cov(vx) =
1

2
〈vX + X v〉0 − 〈v〉0〈x〉0 (834)

Global k moments. We have

〈 k 〉t =

∫
k |S(k, t)|2 dk (835)

=

∫
u∗(x, t)Ku(x, t) dx (836)

〈 k2 〉t =

∫
k2 |S(k, t)|2 dk (837)

=

∫
u∗(x, t)K2u(x, t) dx (838)

=

∫
|Ku(x, t)|2 dx (839)

σk|t =

∫
(k − 〈 k 〉t)2|S(k, t)|2 dk (840)

= 〈 k2 〉t − (〈 k 〉t)2 (841)

=

∫
u∗(x, t)(K − 〈 k 〉t)2u(x, t) dx (842)

=

∫
|(K − 〈 k 〉t)2)u(x, t)|2 dx (843)
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In the case of wave propagation these moments are constant in time.

Covariance. To calculate the time dependence of the covariance between position and wave

number we first note some general properties of the anticommutator operator when the

variables are x, k. Using the commutator relation

[X ,K] = i (844)

we have that

[X ,K]+ = 2KX + i = 2XK − i (845)

Also for two arbitrary functions a and b

[X ,K]+ab = a[X ,K]+b+ b[X ,K]+a− ab = 2kXab+ iab (846)

Now applying this to S(k, 0) e−iW (k)t we have that

(847)

[X ,K]+S(k, 0) e−iW (k)t = 2ik(Sk(k, 0) − iv t S(k, 0)) e−iW (k)t + S(k, 0) e−iW (k)t (848)

= e−iW (k)t[X ,K]+S(k, 0) + 2kv tS(k, 0) e−iW (k)t (849)

Hence

〈 xk 〉t = 〈 1

2
[X ,K]+ 〉 =

∫
1

2
S∗(k, 0)[X ,K]S(k, 0) dk + t

∫
kv |S(k, 0))|2 dk (850)

or

〈 xk 〉t = 〈 xk 〉0 + t〈 xv 〉0 (851)

Thus 〈 xk 〉t increases linearly. Using the fact that all wave number averages are independent

of time we have

Covxk(t) = 〈 xk 〉t − 〈 x 〉t〈 k 〉t (852)

= 〈 xk 〉t − 〈 x 〉t〈 k 〉0 (853)

= 〈 xk 〉0 + t 〈 xv 〉0 − 〈 k 〉0(〈 x 〉0 + t〈 v 〉) (854)

or

Covxk(t) = Covxk(0) + tCovxv(0) (855)

The Covariance

We now consider the covariance between x and k,

Covxk|t = 〈x k 〉t − 〈x 〉0〈 k 〉0 (856)
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We have

〈 xk 〉t = 1
2
〈 kX + Xk 〉t = −

∫
k
∂ψ(k, t)

∂k
|S(k, t)|2 dk (857)

and

〈x k 〉t = 〈x k 〉0 + 〈k v 〉t (858)

Inserting this into Eq. (855) gives

Covxk|t = Covxk|0 + tCovkv (859)

where

Covkv = 〈k v 〉 − 〈k 〉〈 v 〉 (860)

We note that Covkv is independent of time.

Also, one can obtain that

1

2
〈 vX + X v 〉t =

1

2
〈 vX + X v 〉0 + 〈 v2(k) 〉t (861)

and hence

Covxk||t = Covxk|0 + σ2
vt (862)

ρxk|t =
CovAK|t

σx|tσk|t
=

Covxk(t) = Covxk(0) + σ2
vt

σv
√
σ2
x|0 + 2 tCovxv + t2σ2

v

(863)

As before we have that

ρxv|t → 1 as t→ ∞ (864)

D Appendix: Marginals of Space-Time Distributions

We give the marginals of the four dimensional distribution given by Eq. (383) [7]. First, for

convenience we repeat the fundamental definition

u(x, t) = A(x, t)eiϕ(x,t) (865)

S(k, t) =
1√
2π

∫
u(x, t) e−ikx dx = B(k, t)eiψ(k,t) (866)

F (ω, x) =
1√
2π

∫
u(x, t) e−jωt dt = B(ω, x)eiψ(ω,x) (867)

G(k, ω) =
1

2π

∫∫
u(x, t) e−jωt−jkx dt dx = L(k, ω) eiψ(k,ω) (868)
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and also repeat the four different ways one can write the four dimensional distribution

W (x, k, t, ω) =

(
1

2π

)2 ∫∫
u∗(x− 1

2
τx, t−

1

2
τ) u(x+

1

2
τx, t+

1

2
τ) e−iτxk−iτω dτ dτx (869)

=

(
1

2π

)2 ∫∫
G∗(k +

1

2
θx, ω +

1

2
θ)G(k − 1

2
θx, ω − 1

2
θ) e−jθxx−jθt dθ dθx (870)

=

(
1

2π

)2 ∫∫
S∗(k +

1

2
θx, t−

1

2
τ)S(k − 1

2
θx, t−

1

2
τ) e−jθxx−jτω dθ dτ (871)

=

(
1

2π

)2 ∫∫
F ∗(x− 1

2
τx, ω +

1

2
θ)F (x+

1

2
τx, ω − 1

2
θ) e−jtθ−jτxk dθ dτx (872)

There are 4 three dimensional marginals

P (x, k, t) =

∫
C(x, k, t, ω) dω (873)

=
1

2π

∫
u∗(x− 1

2
τx, t) u(x+

1

2
τx, t) e

−jτxk dτx (874)

=
1

2π

∫
S∗(k +

1

2
θx, t)S(k − 1

2
θx, t) e

−jθxx dθx (875)

P (x, k, ω) =

∫
C(x, k, t, ω) dt (876)

=
1

2π

∫
G∗(k +

1

2
θx, ω)G(k − 1

2
θx, ω) e−jθxx dθx (877)

=
1

2π

∫
F ∗(x− 1

2
τx, ω)F (x+

1

2
τx, ω) e−jτxk dτx (878)

P (x, t, ω) =

∫
C(x, k, t, ω) dk (879)

=
1

2π

∫
u∗(x, t− 1

2
τ) u(x, t+

1

2
τ) e−jτω dτ (880)

=
1

2π

∫
F ∗(x, ω +

1

2
θ)F (x, ω − 1

2
θ) e−jtθ dθ (881)

P (k, t, ω) =

∫
C(x, k, t, ω) dx (882)

=
1

2π

∫
G∗(k, ω +

1

2
θ)G(k, ω − 1

2
θ) e−jθt dθ (883)

=
1

2π

∫
S∗(k, t− 1

2
τ)S(k, t− 1

2
τ) e−jτω dθ (884)
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There are six two dimensional marginals given MUST BE CHECKED

P (t, ω)=

∫
W (x, k, t, ω) dx dk (885)

=
1

2π

∫∫
u∗(x, t− 1

2
τ) u(x, t+

1

2
τ) e−iτω dτ dx (886)

P (x, k)=

∫
W (x, k, t, ω) dt dω (887)

=
1

2π

∫∫
u∗(x− 1

2
τx, t) u(x+

1

2
τx, t) e

−iτxk dτxdt (888)

P (k, t) =

∫
W (x, k, t, ω) dω dk= |S(k, t) |2 (889)

P (k, ω)=

∫
W (x, k, t, ω) dt dx= |G(k, ω) |2 (890)

P (t, x)=

∫
W (x, k, t, ω) dω dk= | u(x, t) |2 (891)

P (x, ω)=

∫
W (x, k, t, ω) dt dk= |F (ω, x) |2 (892)

There are 4 one dimensional marginals

P (t)=

∫
W (x, k, t, ω) dx dkdω =

∫
| u(x, t) |2dx (893)

P (x)=

∫
W (x, k, t, ω) dt dωdk =

∫
| u(x, t) |2dt (894)

P (k) =

∫
W (x, k, t, ω) dω dkdt =

∫
|S(k, t) |2 dt (895)

P (ω)=

∫
W (x, k, t, ω) dt dkdt =

∫
|F (ω, x) |2 dx (896)
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Frequency moments. The first conditional moment of frequency is

〈ω〉x,k,t =

∫
ωC(x, k, t, ω) dω (897)

=

(
1

2π

)2 ∫∫∫
ωu∗(x− 1

2
τx, t−

1

2
τ) u(x+

1

2
τx, t+

1

2
τ) e−iτxk−iτω dτ dτx dω (898)

= − 1

2πi

∫
∂

∂τ
u∗(x− 1

2
τx, t−

1

2
τ)u(x +

1

2
τx, t+

1

2
τ) e−iτxk|τ=0 dτx (899)

= − 1

2π

1

2i

∫ [
∂

∂t
u∗(x− 1

2
τx, t)u(x +

1

2
τx, t) − u∗(x− 1

2
τx, t)

∂

∂t
u(x+

1

2
τx, t)

]
e−iτxk dτx

(900)

= − 1

2π

1

2i

∫ [
A(x +

1

2
τx, t)

∂

∂t
A(x− 1

2
τx, t) − A(x− 1

2
τx, t)

∂

∂t
A(x +

1

2
τx, t)

−iA(x +
1

2
τx, t)A(x− 1

2
τx, t)

∂

∂t

{
ϕ(x +

1

2
τx, t) + ϕ(x− 1

2
τx, t)

}]

eiφ(x+ 1
2
τx,t)−iφ(x− 1

2
τx,t)−iτxk dτx (901)

Also,

〈ω〉x,t =

∫
ωC(x, k, t, ω) dωdk (902)

Using Eq. (897) we have that

〈ω〉x,t =

∫
ωC(x, k, t, ω) dωdk (903)

=
1

2πi

∫
∂

∂τ
u∗(x− 1

2
τx, t−

1

2
τ)u(x +

1

2
τx, t+

1

2
τ) e−iτxk|τ=0 dτxdk (904)

=
1

i

∫
δ(τx)

∂

∂τ
u∗(x− 1

2
τx, t−

1

2
τ)u(x +

1

2
τx, t+

1

2
τ)|τ=0 dτx (905)

=
1

i

∫
∂

∂τ
u∗(x, t− 1

2
τ)u(x, t +

1

2
τ)|τ=0 dτx (906)

which evaluates to

〈ω〉x,t = A2(x, t)
∂

∂t
ϕ(x, t) (907)
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Conditional Position. The average position is similarly given

〈 x 〉k,t,ω =

∫
xC(x, k, t, ω) dx (908)

=
1

2π

1

2i

∫ (
S∗(k, t− 1

2
τ)
∂S(k, t + 1

2
τ)

∂k
−
∂S∗(k, t− 1

2
τ)

∂k
S(k, t+

1

2
τ)

)
e−jτω dτ

(909)

=
1

2π

1

2i

∫
B(k, t− 1

2
τ)
∂B(k, t + 1

2
τ)

∂k
− B(k, t+

1

2
τ)
∂B(k, t− 1

2
τ )

∂k
(910)

+ jB(k, t+
1

2
τ)B(k, t− 1

2
τ)

∂

∂k

{
ψ(k, t +

1

2
τ) + ψ(k, t− 1

2
τ)

}
eiψ(k,t+ 1

2
τ)−jψ(k,t− 1

2
τ)−jτω dτ

(911)

To obtain the average position for given wave number and time we have

〈 x 〉k,t =

∫
xC(x, k, t, ω) dx dω (912)

=
1

2i

∫ (
S∗(k, t)

∂S(k, t)

∂k
− ∂S∗(k, t)

∂k
S(k, t)

)
e−jτω dτ (913)

= B2(k, t)
∂

∂k
ψ(k, t) (914)

We now further average to obtain

〈 x 〉t =

∫
B2(k, t)

∂

∂k
ψ(k, t) dk = 〈 ∂

∂k
ψ(k, t) 〉

Covariance. We now calculate the covariance. Consider 〈kω〉x,t

〈kω〉x,t =

∫
kωC(x, k, t, ω) dk dω (915)

=

∫
k〈ω〉x,k,t dk (916)

= A2(x, t)
∂ϕ(x, t)

∂x

∂ϕ(x, t)

∂t
(917)

The local covariance of frequency and spatial frequency is therefore

Covx,t(kω) = A2(x, t)

(
∂ϕ(x, t)

∂t

∂ϕ(x, t)

∂x
− ∂ϕ(x, t)

∂t
− ∂ϕ(x, t)

∂x

)
(918)

and the global covariance is hence

Cov(kω) =

∫∫
A2(x, t)

(
∂ϕ(x, t)

∂t

∂ϕ(x, t)

∂x
− ∂ϕ(x, t)

∂t
− ∂ϕ(x, t)

∂x

)
dx dt (919)
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As discussed previously, we can think of ∂ϕ(x,t)
∂t

and ∂ϕ(x,t)
∂x

as the frequency and spatial

frequency in the x, t representation. Using this idea for example we can immediately write

〈k〉x,t = A2(x, t)
∂ϕ(x, t)

∂x
(920)

In the spectral domain we have

〈xt〉k,ω = B2(k, ω)
∂ψ(k, ω)

∂k

∂ψ(k, ω)

∂ω
(921)

and again one can think of x, t as ∂ψ(k,ω)
∂k

∂ψ(k,ω)
∂ω

.

E Appendix: Asymptotics for pulse propagation

In the text we have given formulas for the instantaneous frequency where we have based our

approach on the classical asymptotic approximation. We repeat here the classical asymptotic

result. The pulse is given by (exactly)

u(x, t) =
1√
2π

∫
S(k, 0) eikx−iW (k)t dk (922)

where S(k, 0) is the initial spatial spectrum and it is calculated from the initial pulse. The

asymptotic solution as standardly given is

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnW ′′/4 (923)

where ks is obtained from

W ′(ks) =
x

t
(924)

In deriving the formulas for instantaneous frequency we wrote

ua(x, t) ∼ B(k, 0)eiψ(k,0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnW ′′/4 (925)

where B(k, 0) and ψ(k, 0) are the initial amplitude and phase of the spectrum. The asymp-

totic amplitude and phase of the pulse are therefore

Aa(x, t) = |S(ks, 0)|

√
1

tW ′′(ks)
(926)

ϕa(x, t) = ψ(ks, 0) + ksx−W (ks)t− πsgnW ′′/4 (927)
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and we obtained our formulas for instantaneous frequency by differentiating asymptotic

phase appropriately. We repeat those results here

ωi(x, t) = − ∂

∂t
ϕ(x, t) =

x

t2W ′′(ks)

dψ

dks
+W (ks) (928)

ki(x, t) =
∂

∂x
ϕ(x, t) =

1

tW ′′(ks)

dψ(k, 0)

dks
+ ks (929)

We now show that a different approach is more appropriate and gives considerable better

answer. This has recently been done with P. Loughlin [14]. Our approach consists of

two steps. First we derive a more suitable asymptotic approximation then the classical

one. Secondly, using this new asymptotic approximation we calculate the Instantaneous

frequency.

To derive the new aproximation we take the initial spectral phase into account in deriving

the asymptotic formula. We write

u(x, t) =
1√
2π

∫
B(k, 0) eikx−iW (k)t+iψ(k,0) dk (930)

In the stationary phase method one assumes that eikx−iW (k)t+iψ(k,0) is rapidly oscillating and

the amplitude is relatively slowly varying. Hence, for most regions of integration there will

be cancellations. However if there is a region where the phase is not oscillating then that

region will contribute the greatest part to the integral. That region is where the derivative

of the phase is zero
∂

∂k
[kx−W (k)t+ ψ(k, 0)] = 0 (931)

This gives

x−W ′(k)t+ ψ′(k, 0) = 0 (932)

or equivalently,

W ′(k) =
x+ ψ′(k, 0)

t
(933)

One solves this equation for k and writes the solution as ks. Notice now that ks is no longer

a function of x/t as would be the case if we did not take into account the phase of the initial

spectrum. Since we assume that the amplitude is slowly varying we have

ua(x, t) ∼ 1√
2π
B(ks, 0)

∫
eikx−iW (k)t+iψ(k,0) dk (934)

The phase is now expanded in a series about the stationary point ks and one keeps terms
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only up to the quadratic one. In particular

kx−W (k)t+ ψ(k, 0) ∼ ksx−W (ks)t+ ψ(ks, 0) + [x−W ′(ks)t+ ψ′(ks, 0)](k − ks) (935)

+
1

2
[−W ′′(ks)t+ ψ′′(ks, 0)](k − ks)

2 (936)

= ksx−W (ks)t+ ψ(ks, 0) +
1

2
[−W ′′(ks)t+ ψ′′(ks, 0)](k − ks)

2

(937)

and therefore

ua(x, t) ∼ 1√
2π
B(ks, 0)

∫
exp i[ksx−W (ks)t + ψ(ks, 0) +

1

2
[−W ′′(ks)t + ψ′′(ks, 0)](k − ks)

2 ] dk

(938)

=
1√
2π
S(ks, 0)ei[ksx−W (ks)t]

∫
exp i[

1

2
{−W ′′(ks)t + ψ′′(ks, 0)}(k − ks)

2 ] dk (939)

Using, ∫
ejat

2/2dt =

√
2π

−ja =

√
2π

|a|e
jπµa/4 (940)

where µa is the sign of a

µa = sgn(a) (941)

we have

ua(x, t) ∼ 1√
2π
S(ks, 0)ei[ksx−W (ks)t]

∫
exp i[

1

2
{−W ′′(ks)t+ ψ′′(ks, 0)}(k − ks)

2 ] dk (942)

∼ S(ks, 0)

√
1

tW ′′(ks) − ψ′′(ks, 0)
eiksx−iW (ks)t−iπsgn [W ′′t−ψ′′(ks,0)]/4 (943)

Note the following. From a functional point of view there appears to be only a difference

in the amplitude and not the phase when one compares Eq.(943 with Eq. (925). However

it must be emphasized that there is a difference as to the value of the stationary points.

Namely, for this case we must solve Eq. ( 933) rather than Eq. (924) for ks.

Instantaneous frequency. We now obtain the instantaneous frequency. The phase is

ϕa(x, t) = ψ(ks, 0) + ksx−W (ks)t− πsgn [W ′′t− ψ′′(ks, 0)]/4 (944)
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Differentiating the phase, ϕa(x, t), we have

ωi(x, t) = − ∂

∂t
ϕa(x, t) (945)

= −
[
dψ

dks

∂ks
∂t

+ x
∂ks
∂t

− t
dW (ks)

dks

∂ks
∂t

]
+W (ks) (946)

= −
[
dψ

dks
+ x− t

dW (ks)

dks

]
∂ks
∂t

+W (ks) (947)

= −
[
dψ

dks
+ x− t

(
x+ ψ′(k, 0)

t

)]
∂ks
∂t

+W (ks) (948)

But since

W ′(k) =
x+ ψ′(k, 0)

t
(949)

the first term is identically zero and hence

ωi(x, t) = W (ks) (950)

Also,

ki(x, t) =
∂

∂x
ϕa(x, t) (951)

=
dψ

dks

∂ks
∂x

+ x
∂ks
∂x

+ ks − t
dW (ks)

dks

∂ks
∂x

(952)

=

[
dψ

dks
+ x− t

dW (ks)

dks

]
∂ks
∂x

+ ks (953)

=

[
dψ

dks
+ x− t

(
x + ψ′(k, 0)

t

)]
∂ks
∂x

+ ks (954)

and therefore

ki(x, t) = ks (955)

Example. We now take an example to illustrate the differences. We shall do it three

different ways, exact, using the classical asymptotic approach, and the modified asymptotic

approach discussed above. At t = 0 we take

u(x, 0) = eiβx
2/2 (956)

and the initial spectrum is

S(k, 0) =

√
i

β
exp

[
−i k

2

2β

]
(957)

For the dispersion relation we take

W (k) = γk2/2 (958)
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Exact. The time dependent spectrum is

S(k, t) =

√
i

β
exp

[
−i k

2

2β
− iW (k)t

]
(959)

giving

u(x, t) =
1√
2π

∫
S(k, t)eikx (960)

=
1√
2π

1√
−iβ

∫
exp

[
−i k

2

2β
− iγk2t

2
+ ikx

]
dk (961)

=
1√

1 + γβt
exp

[
i
β

2

x2

1 + γβt

]
(962)

The exact phase is therefore

ϕ(x, t) =
β

2

x2

1 + γβt
(963)

and the exact instantaneous frequency is

ωi(x, t) = − ∂

∂t
ϕ(x, t) = γ

β2x2

2(1 + γβt)2
(964)

and the exact spatial instantaneous frequency is

ki(x, t) =
∂

∂t
ϕ(x, t) =

βx

1 + γβt
(965)

Standard asymptotic method. The stationary points are obtained from

W ′(k) = γk =
x

t
(966)

and hence,

ks =
x

γt
(967)

giving

W (ks) =
x2

2γt2
(968)

ksx−W (ks)t =
x2

2γt
(969)

Therefore,

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks)
eiksx−iW (ks)t−iπsgnK′′/4 (970)

=

√
1

γβt
exp

[
−i x2

2βγ2t2
+ i

x2

2γt

]
(971)
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The phase is

ϕa(x, t) = − x2

2βγ2t2
+

x2

2γt

and differentiating we obtain

ωi(x, t) = − x2

βγ2t3
+

x2

2γt2
(972)

ki(x, t) = − x

βγ2t2
+

x

γt
(973)

As a check we also calculate the instantaneous frequencies by

ωi(x, t) =
x

t2W ′′(ks)

dψ

dks
+W (ks) (974)

But
dψ

dks
= −k

β
= − x

βγt
(975)

and therefore

ωi(x, t) = − x

γt2
x

βγt
+

x2

2γt2
(976)

= − x2

βγ2t3
+

x2

2γt2
(977)

Also,

ki(x, t) =
1

tW ′′(ks)

dψ

dks
+ ks (978)

= − x

βγ2t2
+

x

γt
(979)

As can be seen these are approximations to the exact answers.

Modified Asymptotic method. We have to solve

W ′(k) = kγ =
x+ ψ′(k, 0)

t
(980)

That is,

ksγ =
x− ks/β

t
(981)

and therefore

ks =
βx

1 + γβt
(982)

(Notice that this happens to be the exact instantaneous spatial frequency, but we do not

take that into account.)
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First, we calculate W (ks) and ksx−W (ks)t. In particular

W (ks) = γk2
s/2 (983)

=
γ

2

(
βx

1 + γβt

)2

(984)

=
γβ2x2

2(1 + γβt)2
(985)

and also

ksx−W (ks)t =
βx

1 + γβt
x− γβ2x2

2(1 + γβt)2
t (986)

=
βx2

1 + γβt

(
1 − γβt

2(1 + γβt)

)
(987)

=
βx2

(1 + γβt)2
(1 + γβt/2) (988)

Therefore

ua(x, t) ∼ S(ks, 0)

√
1

tW ′′(ks) − ψ′′(ks, 0)
eiksx−iW (ks)t−iπsgn [W ′′t−ψ′′(ks,0)]/4 = (989)

=

√
i

β
exp

[
−i k

2
s

2β

]√
1

tW ′′(ks) − ψ′′(ks, 0)
eiksx−iW (ks)t−iπsgn [W ′′t−ψ′′(ks,0)]/4 (990)

=

√
1

β

√
1

tγ + 1/β
exp

[
i

βx2

(1 + γβt)2
(1 + γβt/2) − i

1

2β

(
βx

1 + γβt

)2
]

(991)

=

√
1

β

√
1

tγ + 1/β
exp

[
i

βx2

(1 + γβt)2
(1 + γβt/2) − i

1

2β

(
βx

1 + γβt

)2
]

(992)

=

√
1

β

√
1

tγ + 1/β
exp

[
i

βx2

(1 + γβt)2
(1 + γβt/2 − 1/2)

]
(993)

=

√
1

1 + tγβ
exp

[
i

βx2

2(1 + γβt)

]
(994)

But this is the exact answer and hence will give the exact instantaneous frequencies. To

verify we use

ωi(x, t) = W (ks) =
γβ2x2

2(1 + γβt)2
(995)

and

ki(x, t) = ks =
βx

1 + γβt
(996)

and indeed these are exact. We therefore see that the approximation we have presented

here is more accurate than the standard asymptotic one.
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Case B

We write the corresponding equations for case B. The general solution is

u(x, t) =
1√
2π

∫
F (ω, x) eiωt dω (997)

F (ω, x) =
1√
2π

∫
u(x, t) e−iωt dt (998)

with

F (ω, x) = F (ω, 0) e−iK(ω)x (999)

and where F (ω, 0) is the spectrum evaluated at x = 0,

F (ω, 0) =
1√
2π

∫
u(0, t) e−iωt dt (1000)

The standard asymptotic solution is

ua(x, t) ∼ F (ω, 0)

√
1

xK ′′(ω)
eiωt−iK(ω)x−iπsgnK′′/4|ω=ωs (1001)

where one obtains ωs from

K ′(ωs) = t/x (1002)

The amplitude and phase are

|ua(x, t)| = |F (ω, 0)|

√
1

xK ′′(ω)
(1003)

ϕa(x, t) = ψ(ω, 0)−K(ω)x+ ωt− πsgnK ′′/4 (1004)

and the instantaneous frequencies are

ωi(x, t) =
1

xK ′′(ω)

∂ψ

∂ω
+ ωs (1005)

ki(x, t) = − t

x2K ′′(ωs)

dψ

dωs
+K(ωs) (1006)

We no obtain the new formulas. Using the same approach as before we now have write

u(x, t) =
1√
2π

∫
B(ω, 0) eiωt−iK(ω)x+iψ(ω,0) dω (1007)

and the region where the derivative of the phase is zero is obtained from

∂

∂ω
[ωt−K(ω)x+ ψ(ω, 0)] = 0 (1008)
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which gives

t−K ′(ω)x+ ψ′(ω, 0) = 0 (1009)

or

K ′(ω) =
t + ψ′(ω, 0)

x
(1010)

Taking the amplitude out of the integral we have

ua(t, x) ∼ 1√
2π
B(ωs, 0)

∫
eiωt−iK(ω)x+iψ(ω,0) dω (1011)

Expanding the phase about the stationary point ωs and keeping terms only up to the

quadratic one we have

ωt−K(ω)x+ψ(ω, 0) ∼ ωst−K(ωs)x+ψ(ωs, 0)+
1

2
[−K ′′(ωs)x+ψ′′(ωs, 0)](ω−ωs)2 (1012)

and therefore

ua(t, x) ∼ 1√
2π
B(ωs, 0)

∫
exp i[ωst−K(ωs)x+ ψ(ωs, 0) +

1

2
[−K ′′(ωs)x+ ψ′′(ωs, 0)](ω − ωs)

2 ] dω

(1013)

=
1√
2π
S(ωs, 0)ei[ωst−K(ωs)x]

∫
exp i[

1

2
{−K ′′(ωs)x+ ψ′′(ωs, 0)}(ω − ωs)

2 ] dω =

(1014)

or,

ua(t, x) ∼ S(ωs, 0)

√
1

xK ′′(ωs) − ψ′′(ωs, 0)
eiωst−iK(ωs)x−iπsgn [K′′x−ψ′′(ωs,0)]/4 (1015)

The phase is

ϕa(t, x) = ψ(ωs, 0) + ωst−K(ωs)x− πsgn [K ′′x− ψ′′(ωs, 0)]/4 (1016)

Differentiating the phase, ϕa(t , x ), we have

ki(t, x) = − ∂

∂x
ϕa(t, x) (1017)

= −
[
dψ

dωs

∂ωs
∂x

+ t
∂ωs
∂x

− x
dK(ωs)

dωs

∂ωs
∂x

]
+K(ωs) (1018)

= −
[
dψ

dωs
+ t− x

dK(ωs)

dωs

]
∂ωs
∂x

+K(ωs) (1019)

= −
[
dψ

dωs
+ t− x

(
t+ ψ′(ω, 0)

x

)]
∂ωs
∂x

+K(ωs) (1020)
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However

K ′(ω) =
t + ψ′(ω, 0)

x
(1021)

and hence

ki(t, x) = K(ωs) (1022)

Also,

ωi(t, x) =
∂

∂t
ϕa(t, x) (1023)

=
dψ

dωs

∂ωs
∂t

+ t
∂ωs
∂t

+ ωs − x
dK(ωs)

dωs

∂ωs
∂t

(1024)

=

[
dψ

dωs
+ t− x

dK(ωs)

dωs

]
∂ωs
∂t

+ ωs (1025)

=

[
dψ

dωs
+ t− x

(
t + ψ′(ω, 0)

x

)]
∂ωs
∂t

+ ωs (1026)

which gives

ωi(t, x) = ωs (1027)
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